نتایج جستجو برای: marquardt algorithm
تعداد نتایج: 754501 فیلتر نتایج به سال:
the aim of this study was to estimate suspended sediment by the ann model, dt with cart algorithm and different types of src, in ten stations from the lorestan province of iran. the results showed that the accuracy of ann with levenberg-marquardt back propagation algorithm is more than the two other models, especially in high discharges. comparison of different intervals in models showed that r...
Abstract In this paper, we propose a distributed algorithm for sensor network localization based on maximum likelihood formulation. It relies the Levenberg-Marquardt where computations are among different computational agents using message passing, or equivalently dynamic programming. The resulting provides good accuracy, and it converges to same solution as its centralized counterpart. Moreove...
1 – Introduction Parameter estimation for function optimization is a well established problem in computing, as there are countless applications in practice. For this work, we will focus specifically in implementing a distributed and parallel implementation of the Levenberg Marquardt algorithm, which is a well established numerical solver for function approximation given a limited data set. Para...
Gaussian decomposition of images leads to many promising applications in computer graphics. Gaussian representations can be used for image smoothing, motion analysis, and feature selection for image recognition. Furthermore, image construction from a Gaussian representation is fast, since the Gaussians only need to be added together. The most optimal algorithms [3, 6, 7] minimize the number of ...
In this paper, a new adjustment to the damping parameter of the Levenberg-Marquardt algorithm is proposed to save training time and to reduce error oscillations. The damping parameter of the Levenberg-Marquardt algorithm switches between a gradient descent method and the Gauss-Newton method. It also affects training speed and induces error oscillations when a decay rate is fixed. Therefore, our...
The Marquardt algorithm for nonlinear least squares is presented and is incorporated into the backpropagation algorithm for training feedforward neural networks. The algorithm is tested on several function approximation problems, and is compared with a conjugate gradient algorithm and a variable learning rate algorithm. It is found that the Marquardt algorithm is much more efficient than either...
Back propagation neural network (BPNN) algorithm is a widely used technique in training artificial neural networks. It is also a very popular optimization procedure applied to find optimal weights in a training process. However, traditional back propagation optimized with Levenberg marquardt training algorithm has some drawbacks such as getting stuck in local minima, and network stagnancy. This...
In this paper a modification on Levenberg-Marquardt algorithm for MLP neural network learning is proposed. The proposed algorithm has good convergence. This method reduces the amount of oscillation in learning procedure. An example is given to show usefulness of this method. Finally a simulation verifies the results of proposed method. Keywords—Levenberg-Marquardt, modification, neural network,...
The objective of this study is to compare the predictive ability of Bayesian regularization with Levenberg–Marquardt Artificial Neural Networks. To examine the best architecture of neural networks, the model was tested with one-, two-, three-, four-, and five-neuron architectures, respectively. MATLAB (2011a) was used for analyzing the Bayesian regularization and Levenberg–Marquardt learning al...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید