نتایج جستجو برای: macroelement

تعداد نتایج: 106  

2005
Larry L. Schumaker Tatyana Sorokina T. Sorokina

Given a rectangular box which has been split into 24 tetrahedra, we show how to construct a C1 macroelement using polynomial pieces of degree 6.

2000
YONGDEOK KIM SUNGYUN LEE

The mixed finite element scheme of the Stokes problem with pressure stabilization is analyzed for the cross-grid Pk−Pk−1 elements, k≥ 1, using discontinuous pressures. The P+ k −Pk−1 elements are also analyzed. We prove the stability of the scheme using the macroelement technique. The order of convergence follows from the standard theory of mixed methods. The macroelement technique can also be ...

2001
Rolf Stenberg

We give a self-contained presentation of our macroelement technique for verifying the stability of finite element discretizations of Navier-Stokes equations in the velocity-pressure formulation. The results are also presented in form suitable for the non-mathematical reader.

Journal: :Soil Dynamics and Earthquake Engineering 2009

2017
Salvatore Caddemi Ivo Caliò Francesco Cannizzaro Bartolomeo Pantò

An accurate evaluation of the non-linear behavior of masonry structural elements in existing buildings still represents a complex issue that rigorously requires non-linear finite element strategies difficult to apply to real large structures. Nevertheless, for the static and seismic assessment of existing structures, involving the contribution of masonry materials, engineers need reliable and e...

2010
Rolf Stenberg ROLF STENBERG

We develop a method for the analysis of mixed finite element methods for the Stokes problem in the velocity-pressure formulation. A technical "macroelement condition", which is sufficient for the classical Babuska-Brezzi inequality to be valid, is introduced. Using this condition,we are able to verify the stability, and optimal order of convergence, of several known mixed finite element methods.

2010
R. A. Nicolaides R. A. NICOLAIDES

Following a general analysis of convergence for the finite element solution of the stream function formulation of the Navier-Stokes equation in bounded regions of the plane, an algorithm for pressure recovery is presented. This algorithm, which is easy to implement, is then analyzed and conditions ensuring optimality of the approximation are given. An application is made to a standard conformin...

2010
DAVID SILVESTER

In this paper, a locally stabilized finite element formulation of the Stokes problem is analyzed. A macroelement condition which is sufficient for the stability of (locally stabilized) mixed methods based on a piecewise constant pressure approximation is introduced. By satisfying this condition, the stability of the Q\Pq, quadrilateral, and the P\-Pq triangular element, can be established.

Journal: :Computers & mathematics with applications 2021

We consider the mixed finite element approximation of axisymmetric Stokes problem (ASP) on a bounded polygonal domain in rz-plane. Standard stability results methods do not apply due to singular coefficients differential operator and or vanishing weights associated function spaces. develop new analysis these weighted spaces, propose macroelement conditions that are sufficient ensure well-posedn...

2010
ROLF STENBERG

We prove the optimal order of convergence for some two-dimensional finite element methods for the Stokes equations. First we consider methods of the Taylor-Hood type: the triangular Pi P2 element and the Qk Qk-\ > k ^ 2 , family of quadrilateral elements. Then we introduce two new low-order methods with piecewise constant approximations for the pressure. The analysis is performed using our macr...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->