نتایج جستجو برای: lipschitz mapping
تعداد نتایج: 205914 فیلتر نتایج به سال:
we introduce a new concept of general $g$-$eta$-monotone operator generalizing the general $(h,eta)$-monotone operator cite{arvar2, arvar1}, general $h-$ monotone operator cite{xiahuang} in banach spaces, and also generalizing $g$-$eta$-monotone operator cite{zhang}, $(a, eta)$-monotone operator cite{verma2}, $a$-monotone operator cite{verma0}, $(h, eta)$-monotone operator cite{fanghuang}, $h$-...
In this paper we prove an analogue of Banach and Kannan fixed point theorems by generalizing the Lipschitz constat $k$, in generalized Lipschitz mapping on cone metric space over Banach algebra, which are answers for the open problems proposed by Sastry et al, [K. P. R. Sastry, G. A. Naidu, T. Bakeshie, Fixed point theorems in cone metric spaces with Banach algebra cones, Int. J. of Math. Sci. ...
We introduce a new concept of general $G$-$eta$-monotone operator generalizing the general $(H,eta)$-monotone operator cite{arvar2, arvar1}, general $H-$ monotone operator cite{xiahuang} in Banach spaces, and also generalizing $G$-$eta$-monotone operator cite{zhang}, $(A, eta)$-monotone operator cite{verma2}, $A$-monotone operator cite{verma0}, $(H, eta)$-monotone operator cite{fanghuang}...
In this paper, we study the Hölder continuity of solution mapping to a parametric variational inequality. At first, recalling a real-valued gap function of the problem, we discuss the Lipschitz continuity of the gap function. Then under the strong monotonicity, we establish the Hölder continuity of the single-valued solution mapping for the problem. Finally, we apply these resu...
In this paper, we prove the existence theorem for a mapping defined by T = T1 + T2 when T1 is a μ1-Lipschitz continuous and γ-strongly monotone mapping, T2 is a μ2-Lipschitz continuous mapping, we have a mapping T is Lipschitz continuous but not strongly monotone mapping. This work is extend and improve the result of N. Petrot [17]. Mathematics Subject Classification: 46C05, 47D03, 47H09, 47H10...
we introduce a new concept of general $g$-$eta$-monotone operator generalizing the general $(h,eta)$-monotone operator cite{arvar2, arvar1}, general $h-$ monotone operator cite{xiahuang} in banach spaces, and also generalizing $g$-$eta$-monotone operator cite{zhang}, $(a, eta)$-monotone operator cite{verma2}, $a$-monotone operator cite{verma0}, $(h, eta)$-monotone operator cite{fanghuang}...
A Lipschitz map f between the metric spaces X and Y is called a Lipschitz quotient map if there is a C > 0 (the smallest such C, the co-Lipschitz constant, is denoted coLip(f), while Lip(f) denotes the Lipschitz constant of f) so that for every x ∈ X and r > 0, fBX(x, r) ⊃ BY (f(x), r/C). Thus Lipschitz quotient maps are surjective maps which by definition have the property ensured by the open ...
We prove that a Lipschitz (or uniformly continuous) mapping f : X → Y can be approximated by smooth Lipschitz (resp. uniformly continuous) mapping, if X is a separable Banach space admitting a smooth Lipschitz bump and either X or Y is a C(K) space (resp. super-reflexive space). As a corollary we obtain also smooth approximation of C1-smooth mappings together with their first derivatives.
The aim of paper is to prove a weak convergenceresult for finding a common of the set of fixed points of a nonexpansive mapping and the set of solutions of a variational inequality problem for a monotone, Lipschitz continuous mapping. Using an example in C++, validity of the result will be proved. Also, we shall find a common element of the set of fixed points of a nonexpansive mapping and the ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید