نتایج جستجو برای: liouville problems
تعداد نتایج: 588364 فیلتر نتایج به سال:
in this paper, inverse laplace transform method is applied to analytical solution of the fractional sturm-liouville problems. the method introduces a powerful tool for solving the eigenvalues of the fractional sturm-liouville problems. the results how that the simplicity and efficiency of this method.
In this paper, inverse Laplace transform method is applied to analytical solution of the fractional Sturm-Liouville problems. The method introduces a powerful tool for solving the eigenvalues of the fractional Sturm-Liouville problems. The results how that the simplicity and efficiency of this method.
this paper deals with the boundary value problem involving the differential equationbegin{equation*} ell y:=-y''+qy=lambda y, end{equation*} subject to the standard boundary conditions along with the following discontinuity conditions at a point $ain (0,pi)$ begin{equation*} y(a+0)=a_1 y(a-0),quad y'(a+0)=a_1^{-1}y'(a-0)+a_2 y(a-0),end{equation*}where $q(x), a_1 , a_2$ are real, $qin l...
Regular and singular Sturm-Liouville problems (SLP) are studied including the continuous and differentiable dependence of eigenvalues on the problem. Also initial value problems (IVP) are considered for the SL equation and for general first order systems.
In the present paper, some spectral properties of boundary value problems of Sturm-Liouville type on two disjoint bounded intervals with transmission boundary conditions are investigated. Uniqueness theorems for the solution of the inverse problem are proved, then we study the reconstructing of the coefficients of the Sturm-Liouville problem by the spectrtal mappings method.
In this paper, linear second-order differential equations of Sturm-Liouville type having a finite number of singularities and turning points in a finite interval are investigated. First, we obtain the dual equations associated with the Sturm-Liouville equation. Then, we prove the uniqueness theorem for the solutions of dual initial value problems.
The zeros of the eigenfunctions of self-adjoint Sturm–Liouville eigenvalue problems interlace. For these problems interlacing is crucial for completeness. For the complex Sturm–Liouville problem associated with the Schrödinger equation for a non-Hermitian PT-symmetric Hamiltonian, completeness and interlacing of zeros have never been examined. This paper reports a numerical study of the Sturm– ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید