نتایج جستجو برای: lie higher derivations
تعداد نتایج: 1033216 فیلتر نتایج به سال:
let x be a banach space of dimx > 2 and b(x) be the space of bounded linear operators on x. if l : b(x) → b(x) be a lie higher derivation on b(x), then there exists an additive higher derivation d and a linear map τ : b(x) → fi vanishing at commutators [a, b] for all a, b ∈ b(x) such that l = d + τ
let $mathcal{a}$ be a $c^*$-algebra and $z(mathcal{a})$ the center of $mathcal{a}$. a sequence ${l_{n}}_{n=0}^{infty}$ of linear mappings on $mathcal{a}$ with $l_{0}=i$, where $i$ is the identity mapping on $mathcal{a}$, is called a lie higher derivation if $l_{n}[x,y]=sum_{i+j=n} [l_{i}x,l_{j}y]$ for all $x,y in mathcal{a}$ and all $ngeqslant0$. we show that ${l_{n}}_{n...
Let $X$ be a Banach space of $dim X > 2$ and $B(X)$ be the space of bounded linear operators on X. If $L : B(X)to B(X)$ be a Lie higher derivation on $B(X)$, then there exists an additive higher derivation $D$ and a linear map $tau : B(X)to FI$ vanishing at commutators $[A, B]$ for all $A, Bin B(X)$ such that $L = D + tau$.
motivated by the intensive and powerful works concerning additive mappings of operator algebras, we mainly study lie-type higher derivations on operator algebras in the current work. it is shown that every lie (triple-)higher derivation on some classical operator algebras is of standard form. the definition of lie $n$-higher derivations on operator algebras and related pote...
Let $mathcal{A}$ be a $C^*$-algebra and $Z(mathcal{A})$ the center of $mathcal{A}$. A sequence ${L_{n}}_{n=0}^{infty}$ of linear mappings on $mathcal{A}$ with $L_{0}=I$, where $I$ is the identity mapping on $mathcal{A}$, is called a Lie higher derivation if $L_{n}[x,y]=sum_{i+j=n} [L_{i}x,L_{j}y]$ for all $x,y in mathcal{A}$ and all $ngeqslant0$. We show that ${L_{n}}_{n...
Motivated by the intensive and powerful works concerning additive mappings of operator algebras, we mainly study Lie-type higher derivations on operator algebras in the current work. It is shown that every Lie (triple-)higher derivation on some classical operator algebras is of standard form. The definition of Lie $n$-higher derivations on operator algebras and related pot...
After introducing double derivations of $n$-Lie algebra $L$ we describe the relationship between the algebra $mathcal D(L)$ of double derivations and the usual derivation Lie algebra $mathcal Der(L)$. In particular, we prove that the inner derivation algebra $ad(L)$ is an ideal of the double derivation algebra $mathcal D(L)$; we also show that if $L$ is a perfect $n$-Lie algebra wit...
Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.
let $mathcal m$ be a factor von neumann algebra. it is shown that every nonlinear $*$-lie higher derivation$d={phi_{n}}_{ninmathbb{n}}$ on $mathcal m$ is additive. in particular, if $mathcal m$ is infinite type $i$factor, a concrete characterization of $d$ is given.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید