نتایج جستجو برای: legendre wavelets

تعداد نتایج: 10693  

Journal: :wavelet and linear algebra 2014
m. h. heydari f. m. maalek ghaini m. r. hooshmandasl

in this paper, we develop an efficient legendre wavelets collocation method for well known time-fractional heat equation. inthe proposed method, we apply operational matrix of fractionalintegration to obtain numerical solution of the inhomogeneoustime-fractional heat equation with lateral heat loss and dirichletboundary conditions. the power of this manageable method isconfirmed. moreover, the ...

Journal: :CoRR 2014
M. M. S. Lira Hélio Magalhães de Oliveira M. A. Carvalho Ricardo M. Campello de Souza

A new family of wavelets is introduced, which is associated with Legendre polynomials. These wavelets, termed spherical harmonic or Legendre wavelets, possess compact support. The method for the wavelet construction is derived from the association of ordinary second order differential equations with multiresolution filters. The low-pass filter associated to Legendre multiresolution analysis is ...

Hossein Jafari , M. Arab.Firoozjaee , M. Soleymanivaraki ,

In this paper, we develop a framework to obtain approximate numerical solutions to ordi‌nary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are uti‌lized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the techn...

Journal: :J. Applied Mathematics 2012
Fukang Yin Junqiang Song Fengshun Lu Hongze Leng

A coupled method of Laplace transform and Legendre wavelets is presented to obtain exact solutions of Lane-Emden-type equations. By employing properties of Laplace transform, a new operator is first introduced and then its Legendre wavelets operational matrix is derived to convert the Lane-Emden equations into a system of algebraic equations. Block pulse functions are used to calculate the Lege...

ج سعیدیان ش جوادی ف صفری

An ecient method, based on the Legendre wavelets, is proposed to solve thesecond kind Fredholm and Volterra integral equations of Hammerstein type.The properties of Legendre wavelet family are utilized to reduce a nonlinearintegral equation to a system of nonlinear algebraic equations, which is easilyhandled with the well-known Newton's method. Examples assuring eciencyof the method and its sup...

2015
PRAKASH KUMAR SAHU SANTANU SAHA RAY

A numerical method based on Legendre multi-wavelets is applied for solving Lane-Emden equations which form Volterra integro-differential equations. The Lane-Emden equations are converted to Volterra integro-differential equations and then are solved by the Legendre multi-wavelet method. The properties of Legendre multi-wavelets are first presented. The properties of Legendre multi-wavelets are ...

In this manuscript a new method is introduced for solving fractional differential equations. The fractional derivative is described in the Caputo sense. The main idea is to use fractional-order Legendre wavelets and operational matrix of fractional-order integration. First the fractional-order Legendre wavelets (FLWs) are presented. Then a family of piecewise functions is proposed, based on whi...

Journal: :J. Applied Mathematics 2012
M. H. Heydari Mohammad Reza Hooshmandasl Farid Mohammad Maalek Ghaini Fakhrodin Mohammadi

The operational matrices of fractional-order integration for the Legendre and Chebyshev wavelets are derived. Block pulse functions and collocation method are employed to derive a general procedure for forming these matrices for both the Legendre and the Chebyshev wavelets. Then numerical methods based on wavelet expansion and these operational matrices are proposed. In this proposed method, by...

2011
E. A. Rawashdeh

Department of Mathematics and Sciences Dhofar University, Salalah Oman [email protected] Abstract Legendre wavelets methods are commonly used for the numerical solution of integral equations. In this paper, we apply the Legendre wavelets method to approximate the solution of fractional integro-differential equations. Numerical examples are also presented to demonstrate the validity of the method....

2011
Hossein Jafari

In this paper, we develop a framework to obtain approximate numerical solutions to ordinary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are utilized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the technique.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید