نتایج جستجو برای: learning vector quantization

تعداد نتایج: 794604  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه علم و صنعت ایران - دانشکده مهندسی کامپیوتر 1382

شبکه های عصبی ضربانی به منظور شبیه تر کردن شبکه های عصبی واقعی به شبکه های عصبی مصنوعی ایجاد شدند . درااین شبکه ها نقش عامل زمان از اهمیت ویژه ای بر خوردار است. یکی از شبکه های عصبی کلاسیک که تاکنون به شیوه ضربانی مدل نشده است شبکه learning vector quantization یا lvq است. در این پروژه ما بر آن شدیم تا علاوه بر طراحی و پیاده سازی ضربانی این شبکه تمهیداتی را به کار بگیریم که نسبت به بعضی از شبکه ...

Journal: :Journal of Japan Society for Fuzzy Theory and Systems 1998

Journal: :journal of medical signals and sensors 0
fatemeh jamaloo mohammad mikaeili

common spatial pattern (csp) is a method commonly used to enhance the effects of event‑related desynchronization and event‑related synchronization present in multichannel electroencephalogram‑based brain‑computer interface (bci) systems. in the present study, a novel csp sub‑band feature selection has been proposed based on the discriminative information of the features. besides, a distinction ...

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

Journal: :Communications in Statistics - Simulation and Computation 2013

2004
T. Villmann

The paper deals with the concept of relevance learning in learning vector quantization. Recent approaches are considered: the generalized learning vector quantization as well as the soft learning vector quantization. It is shown that relevance learning can be included in both methods obtaining similar structured learning rules for prototype learning as well as relevance factor adaptation. We sh...

2010
Deepak Joshi Sneh Anand

This paper presents a novel method for stance and swing phase detection employing Learning Vector Quantization (LVQ), using knee angle information only. The results show detection accuracy of 95.9% in stance phase and 83.9% in swing phase. The research concludes an efficient replacement of footswitch for phase detection. The work can directly lead to low cost speed adaptive transtibial prosthes...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید