نتایج جستجو برای: kolmogorov equations
تعداد نتایج: 245657 فیلتر نتایج به سال:
We consider stochastically modeled reaction networks and prove that if a constant solution to the Kolmogorov forward equation decays fast enough relative to the transition rates, then the model is non-explosive. In particular, complex balanced reaction networks are non-explosive.
We prove the uniqueness of the martingale problem associated to some degenerate operators. The key point is to exploit the strong parallel between the new technique introduced by Bass and Perkins [2] to prove uniqueness of the martingale problem in the framework of non-degenerate elliptic operators and the Mc Kean and Singer [13] parametrix approach to the density expansion that has previously ...
We derive a forward partial integro-differential equation for prices of call options in a model where the dynamics of the underlying asset under the pricing measure is described by a -possibly discontinuoussemimartingale. This result generalizes Dupire’s forward equation to a large class of non-Markovian models with jumps and allows to retrieve various forward equations previously obtained for ...
We consider the mean-variance hedging problem under partial Information. The underlying asset price process follows a continuous semimartingale and strategies have to be constructed when only part of the information in the market is available. We show that the initial mean variance hedging problem is equivalent to a new mean variance hedging problem with an additional correction term, which is ...
We extend and solve the classical Kolmogorov problem of finding general classes of Kolmogorov equations that can be transformed to the backward heat equation. These new classes include Kolmogorov equations with time-independent and time-dependent coefficients. Our main idea is to include nonlocal transformations. We describe a step-by-step algorithm for determining such transformations. We also...
Degenerate parabolic equations of Kolmogorov type occur in many areas of analysis and applied mathematics. In their simplest form these equations were introduced by Kolmogorov in 1934 to describe the probability density of the positions and velocities of particles but the equations are also used as prototypes for evolution equations arising in the kinetic theory of gases. More recently equation...
This work (Part (I)) together with its companion (II)) develops a new framework for stochastic functional Kolmogorov equations, which are nonlinear differential equations depending on the current as well past states. Because of complexity results, it seems to be instructive divide our contributions two parts. In contrast existing literature, effort is advance knowledge by allowing delay and dep...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید