نتایج جستجو برای: k means
تعداد نتایج: 702376 فیلتر نتایج به سال:
k-means++ is a seeding technique for the k-means method with an expected approximation ratio of O(log k), where k denotes the number of clusters. Examples are known on which the expected approximation ratio of k-means++ is Ω(log k), showing that the upper bound is asymptotically tight. However, it remained open whether k-means++ yields an O(1)-approximation with probability 1/poly(k) or even wi...
Due to the progressive growth of the amount of data available in a wide variety of scientific fields, it has become more difficult to manipulate and analyze such information. In spite of its dependency on the initial settings and the large number of distance computations that it can require to converge, the K-means algorithm remains as one of the most popular clustering methods for massive data...
The k-means++ algorithm is the state of the art algorithm to solve k-Means clustering problems as the computed clusterings are O(log k) competitive in expectation. However, its seeding step requires k inherently sequential passes through the full data set making it hard to scale to massive data sets. The standard remedy is to use the k-means‖ algorithm which reduces the number of sequential rou...
We run experiments showing that algorithm clarans (Ng et al., 2005) finds better Kmedoids solutions than the standard algorithm. This finding, along with the similarity between the standard K-medoids and K-means algorithms, suggests that clarans may be an effective K-means initializer. We show that this is the case, with clarans outperforming other popular seeding algorithms on 23/23 datasets w...
identifying clusters or clustering is an important aspect of data analysis. it is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. it is a main task of exploratory data mining, and a common technique for statistical data analysis this paper proposed an improved version of k-means algorithm, namely persistent k...
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
هدف از این تحقیق بررسی و توسعه الگوریتم های خوشه بندی جهت بخش بندی ابر نقاط نا منظم لیزر اسکنرهای هوایی برای بازسازی مدل سه بعدی ساختمان می باشد. روش کلی به کار گرفته شده در این پژوهش بازسازی داده مبنا می باشد. هسته اصلی بازسازی داده مبنا الگوریتم خوشه بندی نقاط لیدار است. در این تحقیق چهار روش مطرح خوشه بندی بررسی، پیاده سازی و ارزیابی شده است. این چهار روش عبارتند از خوشه بندی به روش k-means،...
В настоящее время происходит активное накопление данных большого объёма в различных информационных средах, таких как социальные, корпоративные, научные и другие. Интенсивное использование больших данных в различных областях стимулирует повышенный интерес исследователей к развитию методов и средств обработки и анализа массивных данных огромных объёмов и значительного многообразия. Одним из персп...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید