نتایج جستجو برای: injective
تعداد نتایج: 3197 فیلتر نتایج به سال:
in this paper some properties of weak regular injectivity for $s$-posets, where $s$ is a pomonoid, are studied. the behaviour of different kinds of weak regular injectivity with products, coproducts and direct sums is considered. also, some characterizations of pomonoids over which all $s$-posets are of some kind of weakly regular injective are obtained. further, we giv...
Let $mathcal{X}$ be a class of $R$-modules. In this paper, we investigate ;$mathcal{X}$-injective (projective) and DG-$mathcal{X}$-injective (projective) complexes which are generalizations of injective (projective) and DG-injective (projective) complexes. We prove that some known results can be extended to the class of ;$mathcal{X}$-injective (projective) and DG-$mathcal{X}$-injective ...
let $mathcal{x}$ be a class of $r$-modules. in this paper, we investigate ;$mathcal{x}$-injective (projective) and dg-$mathcal{x}$-injective (projective) complexes which are generalizations of injective (projective) and dg-injective (projective) complexes. we prove that some known results can be extended to the class of ;$mathcal{x}$-injective (projective) and dg-$mathcal{x}$-injective ...
let r be a commutative noetherian ring. we study the behavior of injectiveand at dimension of r-modules under the functors homr(-,-) and -×r-.
It is proved that EJ is injective if E is an injective module over a valuation ring R, for each prime ideal J 6= Z. Moreover, if E or Z is flat, then EZ is injective too. It follows that localizations of injective modules over h-local Prüfer domains are injective too. If S is a multiplicative subset of a noetherian ring R, it is well known that SE is injective for each injective R-module E. The...
It is well-known that a countably injective module is Σ-injective. In Proc. Amer. Math. Soc. 316, 10 (2008), 3461-3466, Beidar, Jain and Srivastava extended it and showed that an injective module M is Σ-injective if and only if each essential extension of M(א0) is a direct sum of injective modules. This paper extends and simplifies this result further and shows that an injective module M is Σ-i...
1.1. Injective resolutions. Let C be an abelian category. An object I ∈ C is injective if the functor Hom(−, I) is exact. An injective resolution of an object A ∈ C is an exact sequence 0→ A→ I → I → . . . where I• are injective. We say C has enough injectives if every object has an injective resolution. It is easy to see that this is equivalent to saying every object can be embedded in an inje...
It is no exaggeration to say that the theory of separably injective spaces is quite different from that of injective spaces. In this chapter we will explain why. Indeed, we will enter now in the main topic of the monograph, namely, separably injective spaces and their “universal” version. After giving the main definitions and taking a look at the first natural examples one encounters, we presen...
It is no exaggeration to say that the theory of separably injective spaces is quite different from that of injective spaces. In this chapter we will explain why. Indeed, we will enter now in the main topic of the monograph, namely, separably injective spaces and their “universal” version. After giving the main definitions and taking a look at the first natural examples one encounters, we presen...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید