نتایج جستجو برای: idempotent submodule
تعداد نتایج: 2732 فیلتر نتایج به سال:
The purpose of this paper is to investigate pure submodules of multiplication modules. We introduce the concept of idempotent submodule generalizing idempotent ideal. We show that a submodule of a multiplication module with pure annihilator is pure if and only if it is multiplication and idempotent. Various properties and characterizations of pure submodules of multiplication modules are consid...
in this paper, the notion of fully idempotent modules is defined and it is shown that this notion inherits most of the essential properties of the usual notion of von neumann's regular rings. furthermore, we introduce the dual notion of fully idempotent modules (that is, fully coidempotent modules) and investigate some properties of this class of modules.
A module MR is called right principally quasi-Baer (or simply right p.q.-Baer) if the right annihilator of a principal submodule of R is generated by an idempotent. Let R be a ring. Let α be an endomorphism of R and MR be a α-compatible module and T = R[[x;α]]. It is shown that M [[x]]T is right p.q.-Baer if and only if MR is right p.q.-Baer and the right annihilator of any countably-generated ...
We introduce the notion of idempotent radical class of module coalgebras over a bialgebra B. We prove that if R is an idempotent radical class of B-module coalgebras, then every B-module coalgebra contains a unique maximal B-submodule coalgebra in R. Moreover, a B-module coalgebra C is a member of R if, and only if, DB is in R for every simple subcoalgebra D of C. The collection of B-cocleft co...
let r be a ring, be an endomorphism of r and mr be a -rigid module. amodule mr is called quasi-baer if the right annihilator of a principal submodule of r isgenerated by an idempotent. it is shown that an r-module mr is a quasi-baer module if andonly if m[[x]] is a quasi-baer module over the skew power series ring r[[x; ]].
A submodule [Formula: see text] of is summand absorbing, if implies for any text]. Such submodules often appear in modules over (additively) idempotent semirings, particularly tropical algebra. This paper studies amalgamation and extensions these submodules, more generally upper bound modules.
Let $R$ be a ring, $sigma$ be an endomorphism of $R$ and $M_R$ be a $sigma$-rigid module. A module $M_R$ is called quasi-Baer if the right annihilator of a principal submodule of $R$ is generated by an idempotent. It is shown that an $R$-module $M_R$ is a quasi-Baer module if and only if $M[[x]]$ is a quasi-Baer module over the skew power series ring $R[[x,sigma]]$.
In this paper, the notion of fully idempotent modules is defined and it is shown that this notion inherits most of the essential properties of the usual notion of von Neumann's regular rings. Furthermore, we introduce the dual notion of fully idempotent modules (that is, fully coidempotent modules) and investigate some properties of this class of modules.
Let k be a field and G a finite group. By analogy with the theory of phantom maps in topology, a map f : M → N between kG-modules is said to be phantom if its restriction to every finitely generated submodule of M factors through a projective module. We investigate the relationships between the theory of phantom maps, the algebraic theory of purity, and Rickard’s idempotent modules. In general,...
the submodules with the property of the title ( a submodule $n$ of an $r$-module $m$ is called strongly dense in $m$, denoted by $nleq_{sd}m$, if for any index set $i$, $prod _{i}nleq_{d}prod _{i}m$) are introduced and fully investigated. it is shown that for each submodule $n$ of $m$ there exists the smallest subset $d'subseteq m$ such that $n+d'$ is a strongly dense submodule of $m$...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید