نتایج جستجو برای: ideal graph
تعداد نتایج: 282231 فیلتر نتایج به سال:
let $r$ be a commutative ring with identity. an ideal $i$ of a ring $r$is called an annihilating ideal if there exists $rin rsetminus {0}$ such that $ir=(0)$ and an ideal $i$ of$r$ is called an essential ideal if $i$ has non-zero intersectionwith every other non-zero ideal of $r$. thesum-annihilating essential ideal graph of $r$, denoted by $mathcal{ae}_r$, isa graph whose vertex set is the set...
Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...
let $r$ be a commutative ring with identity and $mathbb{a}(r)$ be the set of ideals of $r$ with non-zero annihilators. in this paper, we first introduce and investigate the principal ideal subgraph of the annihilating-ideal graph of $r$, denoted by $mathbb{ag}_p(r)$. it is a (undirected) graph with vertices $mathbb{a}_p(r)=mathbb{a}(r)cap mathbb{p}(r)setminus {(0)}$, where $mathbb{p}(r)$ is...
the annihilating-ideal graph of a commutative ring $r$ is denoted by $ag(r)$, whose vertices are all nonzero ideals of $r$ with nonzero annihilators and two distinct vertices $i$ and $j$ are adjacent if and only if $ij=0$. in this article, we completely characterize rings $r$ when $gr(ag(r))neq 3$.
The rings considered in this article are commutative rings with identity $1neq 0$. The aim of this article is to define and study the exact annihilating-ideal graph of commutative rings. We discuss the interplay between the ring-theoretic properties of a ring and graph-theoretic properties of exact annihilating-ideal graph of the ring.
Let $R$ be a commutative ring with identity and $mathbb{A}(R)$ be the set of ideals of $R$ with non-zero annihilators. In this paper, we first introduce and investigate the principal ideal subgraph of the annihilating-ideal graph of $R$, denoted by $mathbb{AG}_P(R)$. It is a (undirected) graph with vertices $mathbb{A}_P(R)=mathbb{A}(R)cap mathbb{P}(R)setminus {(0)}$, where $mathbb{P}(R)$ is...
This paper deals with some results concerning the notion of extended ideal based zero divisor graph $overline Gamma_I(R)$ for an ideal $I$ of a commutative ring $R$ and characterize its bipartite graph. Also, we study the properties of an annihilator of $overline Gamma_I(R)$.
Let R be a non-domain commutative ring with identity and A(R) be theset of non-zero ideals with non-zero annihilators. We call an ideal I of R, anannihilating-ideal if there exists a non-zero ideal J of R such that IJ = (0).The annihilating-ideal graph of R is defined as the graph AG(R) with the vertexset A(R) and two distinct vertices I and J are adjacent if and only if IJ =(0). In this paper,...
Let R be a commutative ring with non-zero identity. The annihilator-inclusion ideal graph of R , denoted by ξR, is a graph whose vertex set is the of allnon-zero proper ideals of $R$ and two distinct vertices $I$ and $J$ are adjacentif and only if either Ann(I) ⊆ J or Ann(J) ⊆ I. In this paper, we investigate the basicproperties of the graph ξR. In particular, we showthat ξR is a connected grap...
let $g=(v,e)$ be a simple graph. a set $ssubseteq v$ isindependent set of $g$, if no two vertices of $s$ are adjacent.the independence number $alpha(g)$ is the size of a maximumindependent set in the graph. in this paper we study and characterize the independent sets ofthe zero-divisor graph $gamma(r)$ and ideal-based zero-divisor graph $gamma_i(r)$of a commutative ring $r$.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید