نتایج جستجو برای: hybrid nonlinear difference equation
تعداد نتایج: 998188 فیلتر نتایج به سال:
here, adomian decomposition method has been used for finding approximateand numerical solutions of nonlinear differential difference equations arising inmathematical physics. two models of special interest in physics, namely, thehybrid nonlinear differential difference equation and relativistic toda couplednonlinear differential-difference equation are chosen to illustrate the validity andthe g...
in this paper, we use a combination of legendre and block-pulse functionson the interval [0; 1] to solve the nonlinear integral equation of the second kind.the nonlinear part of the integral equation is approximated by hybrid legen-dre block-pulse functions, and the nonlinear integral equation is reduced to asystem of nonlinear equations. we give some numerical examples. to showapplicability of...
In the present paper, hybrid differential transform and finite difference method (HDTFD) is applied to solve 2D transient nonlinear straight annular fin equation. For the case of linear heat transfer the results are verified with analytical solution. The effect of different parameters on fin temperature distribution is investigated. Effect of time interval of differential transform on the stabi...
in this paper, stochastic generalizations of some fixed point for operators satisfying random contractively generalized hybrid and some other contractive condition have been proved. we discuss also the existence of a solution to a nonlinear random integral equation in banah spaces.
In this paper, we use a combination of Legendre and Block-Pulse functionson the interval [0; 1] to solve the nonlinear integral equation of the second kind.The nonlinear part of the integral equation is approximated by Hybrid Legen-dre Block-Pulse functions, and the nonlinear integral equation is reduced to asystem of nonlinear equations. We give some numerical examples. To showapplicability of...
in this paper, we study the existence, asymptotic behavior of the positive solutions of a fuzzy nonlinear difference equation$$ x_{n+1}=frac{ax_n+x_{n-1}}{b+x_{n-1}}, n=0,1,cdots,$$ where $(x_n)$ is a sequence of positive fuzzy number, $a, b$ are positive fuzzy numbers and the initial conditions $x_{-1}, x_0$ are positive fuzzy numbers.
In this paper we investigate the existence, boundedness and asymptotic behavior of positive solutions fuzzy difference equation \[z_{n+1}=\dfrac{Az_{n-1}}{1+z_{n-2}^{p}},~n\in\mathbb{N}_{0}\] where ( z n ) (zn) is a sequence numbers, A initial conditions ? j z?j = 0 , 1 2 (j=0,1,2) are numbers p integer.
In this paper, we study the existence, asymptotic behavior of the positive solutions of a fuzzy nonlinear difference equation$$ x_{n+1}=frac{Ax_n+x_{n-1}}{B+x_{n-1}}, n=0,1,cdots,$$ where $(x_n)$ is a sequence of positive fuzzy number, $A, B$ are positive fuzzy numbers and the initial conditions $x_{-1}, x_0$ are positive fuzzy numbers.
A hybrid finite difference algorithm for the Zakai equation is constructed to solve nonlinear filtering problems. The algorithm combines the splitting-up finite difference scheme and hierarchical sparse grid method to solve moderately high dimensional nonlinear filtering problems. When applying hierarchical sparse grid method to approximate bell-shaped solutions in most applications of nonlinea...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید