نتایج جستجو برای: hybrid networks
تعداد نتایج: 605995 فیلتر نتایج به سال:
abstract autoregressive integrated moving average (arima) has been one of the widely used linear models in time series forecasting during the past three decades. recent studies revealed the superiority of artificial neural network (ann) over traditional linear models in forecasting. but neither arima nor anns can be adequate in modeling and forecasting time series since the first model cannot d...
today, stock investment has become an important mean of national finance. apparently, it is significant for investors to estimate the stock price and select the trading chance accurately in advance, which will bring high return to stockholders. in the past, long-term trading processes and many technical analysis methods for stock market were put forward. however, stock market is a nonlinear sys...
the hybrid fuzzy differential equations have a wide range of applications in science and engineering. we consider the problem of nding their numerical solutions by using a novel hybrid method based on fuzzy neural network. here neural network is considered as a part of large eld called neural computing or soft computing. the proposed algorithm is illustrated by numerical examples and the resu...
improving time series forecastingaccuracy is an important yet often difficult task.both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. in this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
wireless sensor networks (wsns) are one of the most interesting consequences of innovations in different areas of technology including wireless and mobile communications, networking, and sensor design. these networks are considered as a class of wireless networks which are constructed by a set of sensors. a large number of applications have been proposed for wsns. besides having numerous applic...
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
this paper proposes a hybrid method to find cumulative distribution function (cdf) of completion time of gert-type networks (gtn) which have no loop and have only exclusive-or nodes. proposed method is cre-ated by combining an analytical transformation with gaussian quadrature formula. also the combined crude monte carlo simulation and combined conditional monte carlo simulation are developed a...
computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. nowadays, despite the numerous time series forecasting models propos...
time series forecasting is an active research area that has drawn considerable attention for applications in a variety of areas. forecasting accuracy is one of the most important features of forecasting models. nowadays, despite the numerous time series forecasting models which have been proposed in several past decades, it is widely recognized that financial markets are extremely difficult to ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید