نتایج جستجو برای: hips cells
تعداد نتایج: 1387627 فیلتر نتایج به سال:
introduction: the native inability of nervous system to regenerate, encourage researchers to consider neural tissue engineering as a potential treatment for spinal cord injuries. considering the suitable characteristics of induced pluripotent stem cells (ipscs) for tissue regeneration applications, in this study we investigated the adhesion, viability and proliferation of neural progenitors (de...
Differentiated retinal pigmented epithelial (RPE) cells have been obtained from human induced pluripotent stem (hiPS) cells. However, the visual (retinoid) cycle in hiPS-RPE cells has not been adequately examined. Here we determined the expression of functional visual cycle enzymes in hiPS-RPE cells compared with that of isolated wild-type mouse primary RPE (mpRPE) cells in vitro and in vivo. h...
Efficient generation of competent vasculogenic cells is a critical challenge of human induced pluripotent stem (hiPS) cell-based regenerative medicine. Biologically relevant systems to assess functionality of the engineered vessels in vivo are equally important for such development. Here, we report a unique approach for the derivation of endothelial precursor cells from hiPS cells using a tripl...
BACKGROUND Human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) are a promising source of cells for regenerating myocardium. However, several issues, especially the large-scale preparation of hiPS-CMs and elimination of undifferentiated iPS cells, must be resolved before hiPS cells can be used clinically. The cell-sheet technique is one of the useful methods for transplanting l...
Cell replacement therapy could be an important treatment strategy for Parkinson's disease (PD), which is caused by the degeneration of dopamine neurons in the midbrain (mDA). The success of this approach greatly relies on the discovery of an abundant source of cells capable of mDAergic function in the brain. With the paucity of available human fetal tissue, efforts have increasingly focused on ...
Human induced pluripotent stem (hiPS) cells have great potential for regenerative medicine and drug discovery. It is essential to establish highly efficient and reliable methods for hiPS cell cryopreservation. We examined cryopreservation of hiPS cells by the vitrification method using a dimethyl sulfoxide Me2SO-free and serum-free medium, VS2E, that uses Euro-Collins solution as a base with 40...
Induced pluripotent stem (iPS) cells have demonstrated they can undergo self-renewal, attain pluripotency, and differentiate into various types of functional cells. In clinical transplantation of iPS cells, however, a major problem is the prevention of tumorigenesis. We speculated that tumor formation could be inhibited by means of irradiation. Since the main purpose of this study was to explor...
Stroke is a leading cause of human death and disability in the adult population in the United States and around the world. While stroke treatment is limited, stem cell transplantation has emerged as a promising regenerative therapy to replace or repair damaged tissues and enhance functional recovery after stroke. Recently, the creation of induced pluripotent stem (iPS) cells through reprogrammi...
BACKGROUND Tumorigenicity is an associated risk for transplantation of hepatocytes differentiated from human induced pluripotent stem (hiPS) cells. Hepatocytes express the enzymes galactokinase and ornithine transcarbamylase (OTC) to aid in their own survival. However, hiPS cells do not express these enzymes, and therefore, are not be expected to survive in a medium containing galactose and orn...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید