نتایج جستجو برای: heyting algebra

تعداد نتایج: 70211  

Journal: :bulletin of the iranian mathematical society 0
y. yon mokwon university k. h. kim chungju national university

a heyting algebra is a distributive lattice with implication and a dual $bck$-algebra is an algebraic system having as models logical systems equipped with implication. the aim of this paper is to investigate the relation of heyting algebras between dual $bck$-algebras. we define notions of $i$-invariant and $m$-invariant on dual $bck$-semilattices and prove that a heyting semilattice is equiva...

A Heyting algebra is a distributive lattice with implication and a dual $BCK$-algebra is an algebraic system having as models logical systems equipped with implication. The aim of this paper is to investigate the relation of Heyting algebras between dual $BCK$-algebras. We define notions of $i$-invariant and $m$-invariant on dual $BCK$-semilattices and prove that a Heyting semilattice is equiva...

2009
GURAM BEZHANISHVILI PATRICK J. MORANDI Mamuka Jibladze

This paper surveys recent developments in the theory of profinite Heyting algebras (resp. bounded distributive lattices, Boolean algebras) and profinite completions of Heyting algebras (resp. bounded distributive lattices, Boolean algebras). The new contributions include a necessary and sufficient condition for a profinite Heyting algebra (resp. bounded distributive lattice) to be isomorphic to...

2016
Guram Bezhanishvili John Harding

We prove that the topology of a compact Hausdorff topological Heyting algebra is a Stone topology. It then follows from known results that a Heyting algebra is profinite iff it admits a compact Hausdorff topology that makes it a compact Hausdorff topological Heyting algebra.

2008
Chris Heunen Nicolaas P. Landsman

ing frames O (X ) coming from a topological space to general frames is a genuine generalization of the concept of a space, as plenty of frames exist tha t are not of the form O (X ). A simple example is the frame Oreg(R) of regular open subsets of R, i.e. of open subsets U with the property ——U = U, where —U is the interior of the complement of U . This may be contrasted with the situation for ...

Journal: :Studia Logica 2012
Leo Esakia Benedikt Löwe

Hamkins and Löwe proved that the modal logic of forcing is S4.2. In this paper, we consider its modal companion, the intermediate logic KC and relate it to the fatal Heyting algebra HZFC of forcing persistent sentences. This Heyting algebra is equationally generic for the class of fatal Heyting algebras. Motivated by these results, we further analyse the class of fatal Heyting algebras.

2010
RAYMOND BALBES ALFRED HORN

The determination of the injective and projective members of a category is usually a challenging problem and adds to knowledge of the category. In this paper we consider these questions for the category of Heyting algebras. There has been a lack of uniformity in terminology in recent years. In [6] Heyting algebras are referred to as pseudo-Boolean algebras, and in [1] they are called Brouwerian...

1998
Carsten Butz

In this paper we study the structure of finitely presented Heyting algebras. Using algebraic techniques (as opposed to techniques from proof-theory) we show that every such Heyting algebra is in fact coHeyting, improving on a result of Ghilardi who showed that Heyting algebras free on a finite set of generators are co-Heyting. Along the way we give a new and simple proof of the finite model pro...

Journal: :categories and general algebraic structures with applications 2014
hanamantagouda p. sankappanavar

this paper is the first of a two part series. in this paper, we first prove that the variety of dually quasi-de morgan stone semi-heyting algebras of level 1 satisfies the strongly blended $lor$-de morgan law introduced in cite{sa12}. then, using this result and the results of cite{sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...

Journal: :categories and general algebraic structures with applications 2014
hanamantagouda p. sankappanavar

this paper is the second of a two part series. in this part, we prove, using the description of simples obtained in part i, that the variety $mathbf{rdqdstsh_1}$ of regular dually quasi-de morgan stone semi-heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{rdqdstsh_1}$-chains and the variety of dually quasi-de morgan boolean semi-heyting algebras--...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید