نتایج جستجو برای: hereditary rings n

تعداد نتایج: 1090588  

Journal: :bulletin of the iranian mathematical society 2011
z. zhu

we observe some new characterizations of $n$-presented modules. using the concepts of $(n,0)$-injectivity and $(n,0)$-flatness of modules, we also present some characterizations of right $n$-coherent rings, right $n$-hereditary rings, and right $n$-regular rings.

We observe some new characterizations of $n$-presented modules. Using the concepts of $(n,0)$-injectivity and $(n,0)$-flatness of modules, we also present some characterizations of right $n$-coherent rings, right $n$-hereditary rings, and right $n$-regular rings.

Journal: :bulletin of the iranian mathematical society 2012
bashishth muni pandeya avanish kumar chaturvedi ashok ji gupta

an r-module m is called epi-retractable if every submodule of mr is a homomorphic image of m. it is shown that if r is a right perfect ring, then every projective slightly compressible module mr is epi-retractable. if r is a noetherian ring, then every epi-retractable right r-module has direct sum of uniform submodules. if endomorphism ring of a module mr is von-neumann regular, then m is semi-...

Journal: :Communications in Algebra 2019

Journal: :Proceedings of the National Academy of Sciences 1966

Journal: :bulletin of the iranian mathematical society 2015
h. mostafanasab

in this errata, we reconsider and modify two propositions and their corollaries which were written on epi-retractable and co-epi-retractable modules.

 Let $R$ be a ring‎, ‎and let $n‎, ‎d$ be non-negative integers‎. ‎A right $R$-module $M$ is called $(n‎, ‎d)$-projective if $Ext^{d+1}_R(M‎, ‎A)=0$ for every $n$-copresented right $R$-module $A$‎. ‎$R$ is called right $n$-cocoherent if every $n$-copresented right $R$-module is $(n+1)$-coprese-nted‎, ‎it is called a right co-$(n,d)$-ring if every right $R$-module is $(n‎, ‎d)$-projective‎. ‎$R$...

‎Let $C$ be a semidualizing module‎. ‎We first investigate the properties of‎ ‎finitely generated $G_C$-projective modules‎. ‎Then‎, ‎relative to $C$‎, ‎we introduce and study the rings over which‎ ‎every submodule of a projective (flat) module is $G_C$-projective (flat)‎, ‎which we call $C$-Gorenstein (semi)hereditary rings‎. ‎It is proved that every $C$-Gorenstein hereditary ring is both cohe...

Journal: :bulletin of the iranian mathematical society 0
z. ‎zhu department of mathematics,jiaxing university,jiaxing,zhejiang province,china,314001

let $r$ be a ring‎, ‎and let $n‎, ‎d$ be non-negative integers‎. ‎a right $r$-module $m$ is called $(n‎, ‎d)$-projective if $ext^{d+1}_r(m‎, ‎a)=0$ for every $n$-copresented right $r$-module $a$‎. ‎$r$ is called right $n$-cocoherent if every $n$-copresented right $r$-module is $(n+1)$-coprese-nted‎, ‎it is called a right co-$(n,d)$-ring if every right $r$-module is $(n‎, ‎d)$-projective‎. ‎$r$ ...

Journal: :Transactions of the American Mathematical Society 1974

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید