نتایج جستجو برای: graph eigenvalues
تعداد نتایج: 214818 فیلتر نتایج به سال:
Let $G$ be a graph without an isolated vertex, the normalized Laplacian matrix $tilde{mathcal{L}}(G)$ is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$, where $mathcal{D}$ is a diagonal matrix whose entries are degree of vertices of $G$. The eigenvalues of $tilde{mathcal{L}}(G)$ are called as the normalized Laplacian eigenva...
let $n$ be any positive integer and let $f_n$ be the friendship (or dutch windmill) graph with $2n+1$ vertices and $3n$ edges. here we study graphs with the same adjacency spectrum as the $f_n$. two graphs are called cospectral if the eigenvalues multiset of their adjacency matrices are the same. let $g$ be a graph cospectral with $f_n$. here we prove that if $g$ has no cycle of length $4$ or $...
let $g$ be a graph without an isolated vertex, the normalized laplacian matrix $tilde{mathcal{l}}(g)$is defined as $tilde{mathcal{l}}(g)=mathcal{d}^{-frac{1}{2}}mathcal{l}(g) mathcal{d}^{-frac{1}{2}}$, where $mathcal{d}$ is a diagonal matrix whose entries are degree of vertices of $g$. the eigenvalues of$tilde{mathcal{l}}(g)$ are called as the normalized laplacian ...
A concept related to the spectrum of a graph is that of energy. The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of G . The Laplacian energy of a graph G is equal to the sum of distances of the Laplacian eigenvalues of G and the average degree d(G) of G. In this paper we introduce the concept of Laplacian energy of fuzzy graphs. ...
let $g$ be a graph with vertex set $v(g)$ and edge set $x(g)$ and consider the set $a={0,1}$. a mapping $l:v(g)longrightarrow a$ is called binary vertex labeling of $g$ and $l(v)$ is called the label of the vertex $v$ under $l$. in this paper we introduce a new kind of graph energy for the binary labeled graph, the labeled graph energy $e_{l}(g)$. it depends on the underlying graph $g$...
a concept related to the spectrum of a graph is that of energy. the energy e(g) of a graph g is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of g . the laplacian energy of a graph g is equal to the sum of distances of the laplacian eigenvalues of g and the average degree d(g) of g. in this paper we introduce the concept of laplacian energy of fuzzy graphs. ...
The undirected power graph of a finite group $G$, $P(G)$, is a graph with the group elements of $G$ as vertices and two vertices are adjacent if and only if one of them is a power of the other. Let $A$ be an adjacency matrix of $P(G)$. An eigenvalue $lambda$ of $A$ is a main eigenvalue if the eigenspace $epsilon(lambda)$ has an eigenvector $X$ such that $X^{t}jjneq 0$, where $jj$ is the all-one...
The energy of a graph G is equal to the sum of absolute values of the eigenvalues of the adjacency matrix of G, whereas the Laplacian energy of a graph G is equal to the sum of the absolute value of the difference between the eigenvalues of the Laplacian matrix of G and the average degree of the vertices of G. Motivated by the work from Sharafdini an...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید