نتایج جستجو برای: global exploration
تعداد نتایج: 527498 فیلتر نتایج به سال:
augmented downhill simplex method (adsm) is introduced here, that is a heuristic combination of downhill simplex method (dsm) with random search algorithm. in fact, dsm is an interpretable nonlinear local optimization method. however, it is a local exploitation algorithm; so, it can be trapped in a local minimum. in contrast, random search is a global exploration, but less efficient. here, rand...
Power grid design and maintenance are conducted to solve the problems caused by load growth over time and to stay within the constraints of voltage drop, power factor, etc. Typically, solutions to these problems are optimised individually. Considering multiple problems simultaneously and applying different solutions require vast design space exploration. This exclusively needs advanced algorith...
Augmented Downhill Simplex Method (ADSM) is introduced here, that is a heuristic combination of Downhill Simplex Method (DSM) with Random Search algorithm. In fact, DSM is an interpretable nonlinear local optimization method. However, it is a local exploitation algorithm; so, it can be trapped in a local minimum. In contrast, random search is a global exploration, but less efficient. Here, rand...
In this paper a hybrid algorithm based on exploration power of the Genetic algorithms and exploitation capability of Nelder Mead simplex is presented for global optimization of multi-variable functions. Some modifications are imposed on genetic algorithm to improve its capability and efficiency while being hybridized with Simplex method. Benchmark test examples of structural optimization with a...
Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...
Through modeling human’s brainstorming process, the brain storm optimization (BSO) algorithm has become a promising population based evolution algorithm. However, BSO is often good at global exploration but not good enough at local exploitation, just like most global optimization algorithms. In this paper, the Nelder-Mead’s Simplex (NMS) method is adopted in a simple version of BSO. Our goal is...
Maintaining diversity is important for the performance of evolutionary algorithms. Diversity-preserving mechanisms can enhance global exploration of the search space and enable crossover to find dissimilar individuals for recombination. We focus on the global exploration capabilities of mutation-based algorithms. Using a simple bimodal test function and rigorous runtime analyses, we compare wel...
Maintaining diversity is important for the performance of evolutionary algorithms. Diversity mechanisms can enhance global exploration of the search space and enable crossover to find dissimilar individuals for recombination. We focus on the global exploration capabilities of mutation-based algorithms. Using a simple bimodal test function and rigorous runtime analyses, we compare well-known div...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید