نتایج جستجو برای: generalized landsberg metric
تعداد نتایج: 243949 فیلتر نتایج به سال:
the general relatively isotropic mean landsberg metrics contain the general relativelyisotropic landsberg metrics. a class of finsler metrics is given, in which the mentioned two conceptsare equivalent. in this paper, an interpretation of general relatively isotropic mean landsberg metrics isfound by using c-conformal transformations. some necessary conditions for a general relativelyisotropic ...
equality of -curvatures of the berwald and cartan connections leads to a new class of finsler metrics, so-called bc-generalized landsberg metrics. here, we prove that every bc-generalized landsberg metric of scalar flag curvature with dimension greater than two is of constant flag curvature.
in this paper, we study projective randers change and c-conformal change of p-reduciblemetrics. then we show that every p-reducible generalized landsberg metric of dimension n 2 must be alandsberg metric. this implies that on randers manifolds the notions of generalized landsberg metric andberwald metric are equivalent.
we prove that every r-quadratic metric of scalar flag curvature with a dimension greater than twois of constant flag curvature. then we show that generalized douglas-weyl metrics contain r-quadraticmetrics as a special case, but the class of r-quadratic metric is not closed under projective transformations
in this paper the general relatively isotropic l -curvature finsler metrics are studied. it isshown that on constant relatively landsberg spaces, the concepts of weakly landsbergian, landsbergianand generalized landsbergian metrics are equivalent. some necessary conditions for a relativelyisotropic l -curvature finsler metric to be a riemannian metric are also found.
In this paper, we study a special class of generalized Douglas-Weyl metrics whose Douglas curvature is constant along any Finslerian geodesic. We prove that for every Landsberg metric in this class of Finsler metrics, ? = 0 if and only if H = 0. Then we show that every Finsler metric of non-zero isotropic flag curvature in this class of metrics is a Riemannian if and only if ? = 0.
in this paper, we study a special class of generalized douglas-weyl metrics whose douglas curvature is constant along any finslerian geodesic. we prove that for every landsberg metric in this class of finsler metrics, ? = 0 if and only if h = 0. then we show that every finsler metric of non-zero isotropic flag curvature in this class of metrics is a riemannian if and only if ? = 0.
In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fi...
Equality of hh -curvatures of the Berwald and Cartan connections leads to a new class of Finsler metrics, socalled BC-generalized Landsberg metrics. Here, we prove that every BC-generalized Landsberg metric of scalar flag curvature with dimension greater than two is of constant flag curvature.
0
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید