نتایج جستجو برای: generalized cone convex maps
تعداد نتایج: 358649 فیلتر نتایج به سال:
in this paper, we first present a new important property for bouligand tangent cone (contingent cone) of a star-shaped set. we then establish optimality conditions for pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.
In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.
In this paper, we introduce a cone generalized semi-cyclicφ−contraction maps and prove best proximity points theorems for such mapsin cone metric spaces. Also, we study existence and convergence results ofbest proximity points of such maps in normal cone metric spaces. Our resultsgeneralize some results on the topic.
The aim of this paper is to characterize in terms of classical (quasi)convexity of extended real-valued functions the set-valued maps which are K-(quasi)convex with respect to a convex cone K. In particular, we recover some known characterizations of K-(quasi)convex vector-valued functions, given by means of the polar cone of K.
We show that the multiplication operator associated to a fractional power of a Gamma random variable, with parameter q > 0, maps the convex cone of the 1-invariant functions for a self-similar semigroup into the convex cone of the q-invariant functions for the associated Ornstein-Uhlenbeck (for short OU) semigroup. We also describe the harmonic functions for some other generalizations of the OU...
In this paper, we introduce generalized cyclic φ-contraction maps in metric spaces and give some results of best proximity points of such mappings in the setting of a uniformly convex Banach space. Moreover, we obtain convergence and existence results of proximity points of the mappings on reflexive Banach spaces
This paper develops inferential theory for hypothesis testing under general convex cone alternatives for correlated data. Often, interest lies in detecting order among treatment effects, while simultaneously modeling relationships with regression parameters. Incorporating shape or order restrictions in the modeling framework improves the efficiency of statistical methods. While there exists ext...
In the paper, we describe various applications of the closedness and duality theorems of [7] and [8]. First, the strong separability of a polyhedron and a linear image of a convex set is characterized. Then, it is shown how stability conditions (known from the generalized Fenchel-Rockafellar duality theory) can be reformulated as closedness conditions. Finally, we present a generalized Lagrange...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید