نتایج جستجو برای: garch approach
تعداد نتایج: 1293338 فیلتر نتایج به سال:
This paper investigates the forecasting ability of four different GARCH models and the Kalman filter method. The four GARCH models applied are the bivariate GARCH, BEKK GARCH, GARCH-GJR and the GARCH-X model. The paper also compares the forecasting ability of the non-GARCH model the Kalman method. Forecast errors based on twenty UK company weekly stock return (based on timevary beta) forecasts ...
In this paper, we take the advantage of high frequency data to develop option pricing model and select the Realized GARCH model to describe the volatility of assets, use NIG distribution to describe the distribution of underlying assets, and also build the Realized-GARCH-NIG model to price the option. Finally, we obtain the dynamic option pricing model based on the Realized-GARCH-NIG approach. ...
This paper presents an effective way of combining two popular, yet distinct approaches used in the hedging literature – dynamic programming (DP) and time-series (GARCH) econometrics. Theoretically consistent yet realistic and tractable models are developed for traders interested in hedging a portfolio. Results from a bootstrapping experiment used to construct confidence bands around the competi...
Detecting and modelling structural changes in GARCH processes have attracted increasing attention in time series econometrics. In this paper, we propose a new approach to testing structural changes in GARCH models. The idea is to compare the log likelihoods of a time-varying parameter GARCH model and a constant parameter GARCH model, where the time-varying GARCH parameters are estimated by a lo...
We present a general framework for a GARCH (1,1) type of process with innovations using a probability law of the mean-variance mixing type. We call the process the mean variance mixing GARCH (1,1) or MVM GARCH (1,1). One implication of this particular specification is a GARCH process with skewed innovations and constant mean dynamics. This is achieved without using a location parameter to compe...
We present a new approach to generalised autoregressive conditional het-eroscedasitic (GARCH) modelling for asset returns. Instead of attempting to choose a speciic distribution for the errors, as in the usual GARCH model formulation, we use a nonparametric distribution to estimate these errors. This takes into account the common problems encountered in nancial time series, for example, asymmet...
We present a new approach to generalised autoregressive conditional heteroscedasitic (GARCH) modelling for asset returns. Instead of attempting to choose a speciic distribution for the errors, as in the usual GARCH model formulation, we use a nonparametric distribution to estimate these errors. This takes into account the common problems encountered in nan-cial time series, for example, asymmet...
Heart Rate Variability (HRV) series exhibit long memory and time-varying conditional variance. This work considers the Fractionally Integrated AutoRegressive Moving Average (ARFIMA) models with Generalized AutoRegressive Conditional Heteroscedastic (GARCH) errors. ARFIMA-GARCH models may be used to capture and remove long memory and estimate the conditional volatility in 24 h HRV recordings. Th...
This paper proposes an efficient approach to compute the prices of American style options in the GARCH framework. Rubinstein’s (1998) Edgeworth tree idea is combined with the analytical formulas for moments of the cumulative return under GARCH developed in Duan et al. (1999, 2002) to yield a simple recombining binomial tree for option valuation in the GARCH context. Since the resulting tree is ...
The paper estimate 1-day Value at Risk (VaR) taking into consideration the financial integration of Indian capital market (BSE-SENSEX and NSE-NIFTY) with other global indicators and its own volatility using daily returns covering the period January 2003 to December 2009. The paper specifies a generalized autoregressive conditional heteroscedasticity (GARCH) framework to model the phenomena of v...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید