نتایج جستجو برای: fuzzy production inventory model

تعداد نتایج: 2725727  

Journal: :international journal of industrial engineering and productional research- 0
sanchita sarkar university of calcutta tripti tripti chakrabarti university of calcutta

in the fundamental production inventory model, in order to solve the economic production quantity (epq) we always fix both the demand quantity and the production quantity per day. but, in the real situation, both of them probably will have little disturbances every day. therefore, we should fuzzify both of them to solve the economic production quantity (q*) per cycle. using α-cut for defuzzific...

Journal: :journal of optimization in industrial engineering 2010
mahmoud modiri saeid moheb rabbani hadi heidari gharebolagh

using the mathematic techniques such as fuzzy approach has useful outcomes for production planning in different sources. in this paper lgp1 was used to model the objectives such as: avoidance of shortage or surplus of demand, access to maximum of income, using the normal capacity of production and organizing the inventory of warehouse, within the framework of goal constraints like balancing be...

Journal: :مهندسی صنایع 0
ابوالفضل کاظمی استادیار دانشگاه آزاد اسلامی واحد قزوین- دانشکده صنایع و مکانیک محمدرضا ملکیان کارشناس ارشد دانشگاه آزاد اسلامی واحد قزوین- دانشکده صنایع و مکانیک کیوان صرافها کارشناس ارشد دانشگاه آزاد اسلامی واحد قزوین- باشگاه پژوهشگران جوان

inventory control problem is one of the problems in decision making and management that contains non-crisp parameters in real world. economic production quantity (epq) model in fuzzy environment has been studied so far by many researchers. one of the main assumptions in all previous researches was neglecting the inventory shortage. in this research, a new multi-item epq model with fuzzy random ...

2006
Shan Huo Chen Chien-Chung Wang Shu Man Chang

In the real world, vague phenomenon is quite common in the production/inventory models. In order to process the vagueness, a production/inventory model that can be more closely related to the real vagueness and can take account of the vague factors that contribute to production costs, is required. The model must be extended or altered to fit in with the fuzzy situation. Since items with imperfe...

A.Nagoorgani , P. Palaniammal ,

In this paper, a fuzzy production inventory model with resalable returns has been analysed in an imprecise and uncertain environment by considering the cost and revenue parameters as trapezoidal fuzzy numbers. The main objective is to determine the optimal fuzzy production lotsize which maximizes the expected profit where the products leftout at the end of the period are salvaged and demands wh...

Journal: :Computers & OR 1998
T. K. Roy Manoranjan Maiti

Multi-objective inventory models of deteriorating items have been developed with vague and imprecise information about available storage area. Here, the objectives are (i) to maximize the profit, (ii) to minimize the wastage cost due to deterioration and (iii) to minimize the total production cost. These objectives are also fuzzy in nature. In these models, production rate is a decision variabl...

Hadi Heidari Gharebolagh Mahmoud Modiri Saeid Moheb Rabbani,

Using the mathematic techniques such as Fuzzy approach has useful outcomes for production planning in different sources. In this paper LGP1 was used to model the objectives such as: avoidance of shortage or surplus of demand, access to maximum of income, using the normal capacity of production and organizing the inventory of warehouse, within the framework of Goal constraints like balancing b...

2011
R. KALAIARASI W. RITHA

Supply chain management is concerned with the coordination of material and information flows in multi-stage production systems. Inventory management has long been treated as an isolated function solely focused on individual entities, taking into account concerned with single-vendor-single-buyer and single-vendormultiple-buyer-models. Concerning the supplier selection problem, quantitative model...

2011
Teng-San Shih Jin-Shieh Su Huey-Ming Lee

Both seasonal demand r and total demand R in the production inventory model are difficult to estimate precisely to actual r0 and R0 values, respectively. Hence, we will set the membership grade at r0 and R0 in an interval [λ, 1], 0 < λ < 1, and then, obtain the interval-valued fuzzy sets r̃ and R̃, respectively. For each production quantity period q, we can obtain the fuzzy total cost Gq ( r̃, R̃ )...

2013
Chaman SINGH

In this paper, an integrated inventory model is developed from the perspective of a single vendor and multi-buyers for deteriorating items under fuzzy environment and inflation. In the development of the model, it is assumed that all costs parameters, demand and the production rates are imprecise in nature; they are represented by the trapezoidal fuzzy numbers, as these parameters are not const...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->