نتایج جستجو برای: fuzzy model namely multi adaptive neuro

تعداد نتایج: 2784906  

ABSTRACT: In this study, adaptive neuro-fuzzy inference system, and feed forward neural network as two artificial intelligence-based models along with conventional multiple linear regression model were used to predict the multi-station modelling of dissolve oxygen concentration at the downstream of Mathura City in India. The data used are dissolved oxygen, pH, biological oxygen demand and water...

Journal: :فیزیک زمین و فضا 0
علیرضا حاجیان عضو هیئت علمی دانشکده علوم پایه دانشگاه آزاد واحد نجف آباد حسین زمردیان عضو هیئت علمی دانشگاه آزاد اسلامی واحد علوم وتحقیقات

in common classical methods of cavity depth estimation through microgravity data, usually when a pre-geometrical model is considered for the cavity shape, the simple geometrical models of sphere, vertical cylinder and horizontal cylinder are commonly used. it is obviously an important fact that in real conditions the shapes of the cavities are not exactly sphere, horizontal cylinder or vertical...

Journal: :اکو هیدرولوژی 0
علی حقی زاده استادیار، گروه مهندسی آبخیزداری دانشگاه لرستان محمد محمدلو دانشجوی کارشناسی ارشد مهندسی آبخیزداری دانشگاه لرستان فاضل نوری دانشجوی کارشناسی ارشد مهندسی آبخیزداری دانشگاه لرستان

the discharge or runoff which ousts from a watershed is important. because its deficiency leads to financial losses and its excesses cause damage in lives and property as flood. in this research using artificial neural network multi-layer perceptron (mlp (and adaptive neuro-fuzzy interface system (anfis) and multiple regression method simulated rainfall- runoff process on daily basis in the kho...

Journal: :IEICE Transactions 2005
Masoud Farokhi Mahmoud Kamarei Seyed Hamidreza Jamali

This paper presents two new intelligent methods to linearize the Multi-Carrier Power Amplifiers (MCPA). One of the them is based on the Neuro-Fuzzy controller while the other uses two small neural networks as a polar predistorter. Neuro-Fuzzy controllers are not model based, and hence, have ability to control the nonlinear systems with undetermined parameters. Both methods are adaptive, low com...

Journal: :desert 2015
mohammad tahmoures ali reza moghadamnia mohsen naghiloo

modeling of stream flow–suspended sediment relationship is one of the most studied topics in hydrology due to itsessential application to water resources management. recently, artificial intelligence has gained much popularity owing toits application in calibrating the nonlinear relationships inherent in the stream flow–suspended sediment relationship. thisstudy made us of adaptive neuro-fuzzy ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید باهنر کرمان 1389

عملیات هیدروگرافی برای تمام طول یک رودخانه، کاری پرهزینه و وقت گیر می باشد. در این پژوهش از قابلیت سیستم نرو فازی (adaptive neuro-fuzzy inference system (anfis) ) برای پیش بینی موقعیت مسطحاتی خط القعر رودخانه brazos در تکزاس استفاده شده است. عمق خط القعر با استفاده از روابط هندسه هیدرولیکی محاسبه می شود. داده های استفاده شده در این مقاله، از تحقیق ارائه شده در سال 2004 توسط merwade، برای رودخ...

Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...

Journal: Desert 2015

Modeling of stream flow–suspended sediment relationship is one of the most studied topics in hydrology due to itsessential application to water resources management. Recently, artificial intelligence has gained much popularity owing toits application in calibrating the nonlinear relationships inherent in the stream flow–suspended sediment relationship. Thisstudy made us of adaptive neuro-fuzzy ...

Journal: :CoRR 2012
Sachin Lakra T. V. Prasad G. Ramakrishna

The paper presents a comparison of various soft computing techniques used for filtering and enhancing speech signals. The three major techniques that fall under soft computing are neural networks, fuzzy systems and genetic algorithms. Other hybrid techniques such as neuro-fuzzy systems are also available. In general, soft computing techniques have been experimentally observed to give far superi...

2012
R. Sivakumar C. Sahana P. A. Savitha

This work is an attempt to illustrate the usage and effectiveness of soft computing techniques in the estimation and control of multi input and multi output systems. This paper focuses on neuro-fuzzy system ANFIS (Adaptive Neuro Fuzzy Inference system). An Adaptive Network based Fuzzy Interference System architecture extended to cope with multivariable systems has been used. The performance of ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید