نتایج جستجو برای: fractional poisson bracket
تعداد نتایج: 96640 فیلتر نتایج به سال:
using the riemann-liouville fractional differintegral operator, the lie theory is reformulated. the fractional poisson bracket over the fractional phase space as 3n state vector is defined to be the fractional lie derivative. its properties are outlined and proved. a theorem for the canonicity of the transformation using the exponential operator is proved. the conservation of its generator is p...
A Z-graded Lie bracket { , }P on the exterior algebra Ω(M) of differential forms, which is an extension of the Poisson bracket of functions on a Poisson manifold (M,P ), is found. This bracket is simultaneously graded skew-symmetric and satisfies the graded Jacobi identity. It is a kind of an ‘integral’ of the Koszul-Schouten bracket [ , ]P of differential forms in the sense that the exterior d...
First, the dynamics of LC-circuits are formulated as a Hamiltonian system defined with respect to a Poisson bracket which may be degenerate, i.e., nonsymplectic. This Poisson bracket is deduced from the network graph of the circuit and captures the dynamic invariants due to KirchhoWs laws. Second, the antisymmetric relations defining the Poisson bracket are realized as a physical network using ...
We study the classical current algebra for principal chiral model defined on two dimensional world-sheet with general metric. We develop the Hamiltonian formalism and determine the form of the Poisson brackets between currents. Then we determine the Poisson bracket for Lax connection and we show that this Possion bracket does not depend on the world-sheet metric. We also study the Nambu-Gotto f...
Definition 1.1. A Poisson algebra is an associative algebra A over a field K (fixed, of characteristic zero), equipped with a Lie bracket {−,−} such that {x,−} is a derivation for any x ∈ A, i.e. {x, yz} = {x, y}z + y{x, z}. Definition 1.2. A Poisson structure on a manifold M is a Poisson bracket {−,−} on the algebra C∞(M). Example 1.3. On T ∗Rn with position coordinates q1, ..., qn and momentu...
A new Lax equation is introduced for the KP hierarchy which avoids the use of pseudo-differential operators, as used in the Sato approach. This Lax equation is closer to that used in the study of the dispersionless KP hierarchy, and is obtained by replacing the Poisson bracket with the Moyal bracket. The dispersionless limit, underwhich the Moyal bracket collapses to the Poisson bracket, is par...
Aspects of noncanonical Hamiltonian field theory are reviewed. '·1any systems are Hamiltonian in the sense of possessing Poisson bracket structures, yet the equations are not in canonical form. A particular sys tem of thi s type is cons idered, namely reduced magnetohydrodynamics (RllHD) which was derived for tokamak modelling. The notion of a liePoisson bracket is reviewed; these are special P...
Aspects of noncanonical Hamiltonian field theory are reviewed. f·1any systems are Hamiltonian in the sense of possessing Poisson bracket structures. yet the equations are not in canonical form. A particular system of this type is considered. namely reduced magnetohydrodynamics (RflHD) which was derived for tokamak modelling. The notion of a LiePoisson bracket is reviewed; these are special Pois...
Aspects of noncanonical Hamiltonian field theory are reviewed. '·1any systems are Hamiltonian in the sense of possessing Poisson bracket structures, yet the equations are not in canonical form. A particular sys tem of thi s type is cons idered, namely reduced magnetohydrodynamics (RllHD) which was derived for tokamak modelling. The notion of a liePoisson bracket is reviewed; these are special P...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید