نتایج جستجو برای: fractional partial differential equations
تعداد نتایج: 711403 فیلتر نتایج به سال:
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
the present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. the proposed scheme is based on laplace transform and new homotopy perturbation methods. the fractional derivatives are considered in caputo sense. to illustrate the ability and reliability of the method some examples are provided. the results ob...
in this paper an approximate analytical solution of the fractional zakharov-kuznetsov equations will be obtained with the help of the reduced differential transform method (rdtm). it is in-dicated that the solutions obtained by the rdtm are reliable and present an effective method for strongly nonlinear fractional partial differential equations.
in this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (fpdes) in the sense of modified riemann-liouville derivative. with the aid of symbolic computation, we choose the space-time fractional zakharov-kuznetsov-benjamin-bona-mahony (zkbbm) equation in mathematical physics with a source to illustrate the validity a...
Fractional derivatives and integrals are new concepts of derivatives and integrals of arbitrary order. Partial differential equations whose derivatives can be of fractional order are called fractional partial differential equations (FPDEs). Recently, these equations have received special attention due to their high practical applications. In this paper, we survey a rather general case of FPDE t...
In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...
In this paper an approximate analytical solution of the fractional Zakharov-Kuznetsov equations will be obtained with the help of the reduced differential transform method (RDTM). It is in-dicated that the solutions obtained by the RDTM are reliable and present an effective method for strongly nonlinear fractional partial differential equations.
in this paper, we prove the existence and uniqueness results to the random fractional functional differential equations under assumptions more general than the lipschitz type condition. moreover, the distance between exact solution and appropriate solution, and the existence extremal solution of the problem is also considered.
The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید