نتایج جستجو برای: fourth order boundaryvalue problem
تعداد نتایج: 1708478 فیلتر نتایج به سال:
We consider an initialand Dirichlet boundaryvalue problem for a fourth-order linear stochastic parabolic equation, in two or three space dimensions, forced by an additive space-time white noise. Discretizing the space-time white noise a modeling error is introduced and a regularized fourthorder linear stochastic parabolic problem is obtained. Fully-discrete approximations to the solution of the...
In this paper, a numerical method is developed for solving a linear sixth order boundaryvalue problem (6VBP ) by using the hyperbolic uniform spline of order 3 (lower order). Thereis proved to be first-order convergent. Numerical results confirm the order of convergencepredicted by the analysis.
in this paper, a numerical method is developed for solving a linear sixth order boundaryvalue problem (6vbp ) by using the hyperbolic uniform spline of order 3 (lower order). thereis proved to be first-order convergent. numerical results confirm the order of convergencepredicted by the analysis.
in this paper, we investigate some problems which can be reduced to the goursat problem for afourth order equation. some results and theorems are given concerning the existence and uniqence for thesolution of the suggested problem.
Generalized solution on Neumann problem of the fourth order ordinary differential equation in space $W^2_alpha(0,b)$ has been discussed, we obtain the condition on B.V.P when the solution is in classical form. Formulation of Quintic Spline Function has been derived and the consistency relations are given.Numerical method,based on Quintic spline approximation has been developed. Spline solution ...
In this paper, we consider the second-order three-point boundaryvalue problem u′′(t) + f(t, u, u′, u′′) = 0, 0 ≤ t ≤ 1, u(0) = u(1) = αu(η). Under suitable conditions and using Schauder fixed point theorem, we prove the existence of at least one symmetric positive solution. We also study the existence of positive eigenvalues for this problem. We emphasis the highestorder derivative occurs nonli...
In this article, we study the second-order three-point boundaryvalue problem u′′(t) + a(t)u′(t) + f(t, u) = 0, 0 ≤ t ≤ 1, u′(0) = 0, u(1) = αu(η), where 0 < α, η < 1, a ∈ C([0, 1], (−∞, 0)) and f is allowed to change sign. We show that there exist two positive solutions by using Leggett-Williams fixed-point theorem.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید