نتایج جستجو برای: flat weyl manifold
تعداد نتایج: 96287 فیلتر نتایج به سال:
in this paper, we obtain a necessary and sufficient condition for a conformal mapping between two weyl manifolds to preserve einstein tensor. then we prove that some basic curvature tensors of $w_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. also, we obtained the relation between the scalar curvatures of the weyl manifolds r...
In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...
We study complex 4-manifolds with holomorphic self-dual conformal structures, and we obtain an interpretation of the Weyl tensor of such a manifold as the projective curvature of a field of cones on the ambitwistor space. In particular, its vanishing is implied by the existence of some compact, simply-connected, null-geodesics. We also relate the Cotton-York tensor of an umbilic hypersurface to...
A Weyl structure on a compact conformal manifold is not complete in general. If, however, the life-time of incomplete geodesics can be controlled on compact subsets of the tangent bundle, the Weyl connection is called tame. We prove that every closed, non-exact, tame Weyl structure on a compact conformal manifold is either flat, or has irreducible holonomy, generalizing an analogous statement f...
A Hermitian Einstein-Weyl manifold is a complex manifold admitting a Ricci-flat Kähler covering M̃ , with the deck transform acting on M̃ by homotheties. If compact, it admits a canonical Vaisman metric, due to Gauduchon. We show that a Hermitian Einstein-Weyl structure on a compact complex manifold is determined by its volume form. This result is a conformal analogue of Calabi’s theorem stating ...
We obtain a characterization of the Kerr metric among stationary, asymptotically flat, vacuum spacetimes, which extends the characterization in terms of the Simon tensor (defined only in the manifold of trajectories) to the whole spacetime. More precisely, we define a three index tensor on any spacetime with a Killing field, which vanishes identically for Kerr and which coincides in the strictl...
In ([1]), T. Adati and K. Matsumoto defined para-Sasakian and special para-Sasakian manifolds which are considered as special cases of an almost paracontact manifold introduced by I. Sato and K. Matsumoto ([10]). In the same paper, the authors studied conformally symmetric para-Sasakian manifolds and they proved that an ndimensional (n>3) conformally symmetric para-Sasakian manifold is conforma...
Using symmetry arguments only, we show that every spacetime with mirror-symmetric spatial sections is necessarily conformally flat. The general form of the Ricci tensor of such spacetimes is also determined. 1. Introduction. It is well known that the curvature tensor of any four-dimensional differentiable manifold has only 20 algebraically independent components. Ten out of these 20 components ...
Suppose that (Mn, g) is an asymptotically flat Riemannian spin manifold of positive scalar curvature. The positive mass theorem [1, 2, 3] states that the total mass of the manifold is always positive, and is zero if and only if the manifold is flat. This result suggests that there should be an inequality which bounds the Riemann tensor in terms of the total mass and implies that curvature must ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید