نتایج جستجو برای: finite abelian group
تعداد نتایج: 1230728 فیلتر نتایج به سال:
given an integer $n$, we denote by $mathfrak b_n$ and $mathfrak c_n$ the classes of all groups $g$ for which the map $phi_{n}:gmapsto g^n$ is a monomorphism and an epimorphism of $g$, respectively. in this paper we give a characterization for groups in $mathfrak b_n$ and for groups in $mathfrak c_n$. we also obtain an arithmetic description of the set of all integers $n$ such that a gr...
this thesis basically deals with the well-known notion of the bear-invariant of groups, which is the generalization of the schur multiplier of groups. in chapter two, section 2.1, we present an explicit formula for the bear-invariant of a direct product of cyclic groups with respect to nc, c>1. also in section 2.2, we caculate the baer-invatiant of a nilpotent product of cyclic groups wuth resp...
let $g$ be a group and $a=aut(g)$ be the group of automorphisms of $g$. then the element $[g,alpha]=g^{-1}alpha(g)$ is an autocommutator of $gin g$ and $alphain a$. also, the autocommutator subgroup of g is defined to be $k(g)=langle[g,alpha]|gin g, alphain arangle$, which is a characteristic subgroup of $g$ containing the derived subgroup $g'$ of $g$. a group is defined...
let $g$ be a group and $aut(g)$ be the group of automorphisms of$g$. for any naturalnumber $m$, the $m^{th}$-autocommutator subgroup of $g$ is definedas: $$k_{m}(g)=langle[g,alpha_{1},ldots,alpha_{m}] |gin g,alpha_{1},ldots,alpha_{m}in aut(g)rangle.$$in this paper, we obtain the $m^{th}$-autocommutator subgroup ofall finite abelian groups.
it was shown in [a. azimifard, e. samei, n. spronk, jfa 256 (2009)] that the zl-amenability constant of a finite group is always at least~$1$, with equality if and only if the group is abelian. it was also shown in [a. azimifard, e. samei, n. spronk, op cit.] that for any finite non-abelian group this invariant is at least $301/300$, but the proof relies crucially on a deep result of d. a. ride...
let $g$ be a finite group. a subset $x$ of $g$ is a set of pairwise non-commuting elements if any two distinct elements of $x$ do not commute. in this paper we determine the maximum size of these subsets in any finite non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup.
Let $G$ be a finite group. A subset $X$ of $G$ is a set of pairwise non-commuting elements if any two distinct elements of $X$ do not commute. In this paper we determine the maximum size of these subsets in any finite non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup.
In this paper we prove that a finite group $G$ having at most three conjugacy classes of non-normal non-abelian proper subgroups is always solvable except for $Gcong{rm{A_5}}$, which extends Theorem 3.3 in [Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable, Acta Math. Sinica (English Series) 27 (2011) 891--896.]. Moreover, we s...
Let $G$ be a finite non-abelian group with center $Z(G)$. The non-commuting graph of $G$ is a simple undirected graph whose vertex set is $Gsetminus Z(G)$ and two vertices $x$ and $y$ are adjacent if and only if $xy ne yx$. In this paper, we compute Laplacian energy of the non-commuting graphs of some classes of finite non-abelian groups..
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید