نتایج جستجو برای: fibonacci functional equation

تعداد نتایج: 806225  

Journal: :bulletin of the iranian mathematical society 0
s.-m. jung

0

M. Bidkham M. Hosseini

Let denote by Fk,n the nth k-Fibonacci number where Fk,n = kFk,n−1+Fk,n−2 for n 2 with initial conditions Fk,0 = 0, Fk,1 = 1, we may derive a functionalequation f(k, x) = kf(k, x − 1) + f(k, x − 2). In this paper, we solve thisequation and prove its Hyere-Ulam stability in the class of functions f : N×R ! X,where X is a real Banach space.

Journal: :JOURNAL OF ADVANCES IN MATHEMATICS 2018

2016
Ayşe Kurt Bahşı Celal Bayar

Abstract: In this study, we present a numerical scheme to solve the telegraph equation by using Fibonacci polynomials. This method is based on the Fibonacci collocation method which transforms the equation into a matrix equation, and the unknown of this equation is a Fibonacci coefficients matrix. Some numerical examples with comparisons are included to demonstrate the validity and applicabilit...

2010
J. KNOPFMACHER

1. J. C. Butcher. "On a Conjecture Concerning a Set of Sequences Satisfying The Fibonacci Difference Equation/ The Fibonacci Quarterly 16 (1978):8183. 2. M. D. Hendy, "Stolarskys Distribution of Positive Integers." The Fibonacci Quarterly 16 (1978)2 70-80. 3. V. E. HoggattsJr. Fibonacci and Lucas Numbers* Boston: Houghton Mifflin9 1969. Pp. 34-35. 4. K. Stolarsky. "A Set of Generalized Fibonacc...

Journal: :international journal of nonlinear analysis and applications 2012
y. j. cho c. park m. eshaghi gordji

won{gil park [won{gil park, j. math. anal. appl., 376 (1) (2011) 193{202] proved the hyers{ulam stability of the cauchy functional equation, the jensen functional equation and the quadraticfunctional equation in 2{banach spaces. one can easily see that all results of this paper are incorrect.hence the control functions in all theorems of this paper are not correct. in this paper, we correctthes...

2015
Roji Lather Manoj Kumar M. Bidkham M. Hosseini

1. A. H. Sales, About K-Fibonacci numbers and their associated numbers; Int. J. of Math Forum, Vol. 6, no.50, (2011) 24732479. 2. D. H. Hyers, On the stability if linear functional equation, Proc. Natl. Acad. Sci. USA. 27(1941) 221-224. 3. D. H. Hyers, G. Isac and Th. M Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Boston, 1998. 4. D. H. Hyers and Th. M. Rassias, ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید