نتایج جستجو برای: ffnn
تعداد نتایج: 253 فیلتر نتایج به سال:
Recurrent neural network (RNN) are being extensively used over feed-forward neural networks (FFNN) because of their inherent capability to capture temporal relationships that exist in the sequential data such as speech. This aspect of RNN is advantageous especially when there is no a priori knowledge about the temporal correlations within the data. However, RNNs require large amount of data to ...
(FFNN) is used to compensate for the robot dynamics. The FFNN computes the required torques to drive the robot manipulator to achieve desired tracking. The stability of combined PI kinematic and FFNN computed torque is proved by Lyapunov theory. Simulation results are carried out for 3 DOF articulated robot manipulator to evaluate the controller performance.
In this paper, we investigate the robustness of Feed Forward Neural Network (FFNN) ensemble models applied to quarterly time series forecasting tasks, by comparing their prediction ability with that of Seasonal Auto-regressive Integrated Moving Average (SARIMA) models. We obtained adequate SARIMA models which required statistical knowledge and considerable effort. On the other hand, FFNN ensemb...
In this paper, we propose four techniques for extraction of facial features namely 2DPCA, LDA, KPCA and KFA. The purpose of face feature extraction is to capture certain discriminative features that are unique for a person. In the previous works that uses PCA for face feature extraction involves merging the features and reducing the dimensions that results in some information loss. To overcome ...
Abstract-This paper investigates the ability of feed-forward neural network (FFNN) classifiers trained with examples to generalize and estimate the structure of the feature space in the form of class membership information. A functional theory of FFNN classifiers is developed from formal definitions. The properties of discriminant functions learned by FFNN classifiers from sample data are also ...
In the dynamic global economy, the accuracy in forecasting the foreign currency exchange rates is of crucial importance for any future investment. The use of computational intelligence based techniques for forecasting has been proved extremely successful in recent times. The aim of this study is to identify a neural network model which has ability to predict the US Dollar against Sri Lankan Rup...
-This paper focuses the function approximation capability of feed forward neural network (FFNN). A Graphical user Interface (GUI) system has been developed and tested for function approximation. This GUI system can approximate any nonlinear/linear function which can have any number of input variable and six output variables. Configuration of neural network can be set from a single GUI window. A...
Some results from a method for generating recurrent neural networks (RNN) for prediction of financial and macroeconomic time series are presented. In the presented method, a feedforward neural network (FFNN) is first obtained using backpropagation. While backpropagation is usually able to find a fairly good predictor, all FFNN are limited by their lack of short-term dynamic memory. RNNs, by con...
The paper is based on feed forward neural network (FFNN) optimization by particle swarm intelligence (PSI) used to provide initial weights and biases to train neural network. Once the weights and biases are found using Particle swarm optimization (PSO) with neural network used as training algorithm for specified epoch, the same are used to train the neural network for training and classificatio...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید