نتایج جستجو برای: explanatory text

تعداد نتایج: 185844  

2005
Kinji TAKEUCHI Koichi KISE

We propose a method of extracting explanatory text of images from HTML files based both on retrieval of similar images and expansion of keywords using co-occurrence. Images in web pages often have their explanatory text in the same pages. Such explanatory text includes important keywords that explain the corresponding image. It is therefore reasonable to put these keywords to the image for fulf...

1992
Clarisse Sieckenius de Souza Maria das Graças Volpe Nunes

This paper discusses aspects of the planning of explanatory texts for logic based systems. It presents a method for deriving Natural Language text plans from Natural Deduction-based structures. This approach allows for the planning of explanatory texts in a general-purpose logic based system framework, ensuring a greater degree of portability across domains.

2006
María de los Ángeles Alonso-Lavernia Argelio De-la-Cruz-Rivera Grigori Sidorov

We present a domain-independent method for generation of natural language explanations of rules in expert systems. The method is based on explanatory rules written in a procedural formal language, which build the explanation from predefined natural language texts fragments. For better style, a specific text fragment is randomly selected from a group of synonymous expressions. We have implemente...

2007
Olivier Couturier Tarek Hamrouni Sadok Ben Yahia Engelbert Mephu Nguifo

Résumé. La recherche de règles d’association est une question centrale en Extraction de Connaissances dans les Données (ECD). Dans cet article, nous nous intéressons plus particulièrement à la restitution visuelle de règles pertinentes dans un corpus très important. Nous proposons ainsi un prototype basé sur une approche de type "wrapper" par intégration des phases d’extraction et de visualisat...

Journal: :Scientific Bulletin of Kherson State University. Series Linguistics 2019

Journal: :IEEE Trans. Evolutionary Computation 2003
John A. Atkinson-Abutridy Chris Mellish J. Stuart Aitken

We present a novel evolutionary model for knowledge discovery from texts (KDTs), which deals with issues concerning shallow text representation and processing for mining purposes in an integrated way. Its aims is to look for novel and interesting explanatory knowledge across text documents. The approach uses natural language technology and genetic algorithms to produce explanatory novel hypothe...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید