نتایج جستجو برای: equienergetic digraphs
تعداد نتایج: 5058 فیلتر نتایج به سال:
Two digraphs of same order are said to be skew-equienergetic if their skew energies are equal. One of the open problems proposed by Li and Lian was to construct non-cospectral skew-equienergetic digraphs on n vertices. Recently this problem was solved by Ramane et al. In this paper, we give some new methods to construct new skew-equienergetic digraphs.
two digraphs of same order are said to be skew-equienergetic if theirskew energies are equal. one of the open problems proposed by li andlian was to construct non-cospectral skew-equienergetic digraphs onn vertices. recently this problem was solved by ramane et al. inthis paper, we give some new methods to construct new skew-equienergeticdigraphs.
let $d$ be a digraph with skew-adjacency matrix $s(d)$. the skew energy of $d$ is defined as the sum of the norms of all eigenvalues of $s(d)$. two digraphs are said to be skew equienergetic if their skew energies are equal. we establish an expression for the characteristic polynomial of the skew adjacency matrix of the join of two digraphs, and for the respective skew energ...
We show that, contrary to the claims of several authors that there exists no equienergetic graphs on seven vertices, there exists 21 sets of noncospectral, equienergetic graphs on seven vertices. We also give the number and cardinality of sets of equienergetic connected graphs on eight, nine and ten vertices, and equienergetic trees and chemical trees on up to 22 vertices. Finally, we construct...
The energy of a graph is the sum of the absolute values of the eigenvalues of its adjacency matrix. Two graphs are equienergetic if they have the same energy. We construct infinite families of graphs equienergetic with edge-deleted subgraphs.
The energy of a simple graph G is the sum of the absolute values of the eigenvalues of its adjacency matrix. Two graphs of the same order are said to be equienergetic if they have the same energy. Several ways to construct equienergetic non-cospectral graphs of very large size can be found in the literature. The aim of this work is to construct equienergetic non-cospectral graphs of small size....
The D-eigenvalues of a graph G are the eigenvalues of its distance matrix D , and the D-energy ED(G) is the sum of the absolute values of its D-eigenvalues. Two graphs are said to be D-equienergetic if they have the same D-energy. In this note we obtain bounds for the distance spectral radius and D-energy of graphs of diameter 2. Pairs of equiregular D-equienergetic graphs of diameter 2, on p =...
The D-eigenvalues of a connected graph G are the eigenvalues of its distance matrix D, and form the D-spectrum of G. The D-energy ED(G) of the graph G is the sum of the absolute values of its D-eigenvalues. Two (connected) graphs are said to be D-equienergetic if they have equal D-energies. The D-spectra of some graphs and their D-energies are calculated. A pair of D-equienergetic bipartite gra...
The energy of a graph is equal to the sum of the absolute values of its eigenvalues. Two graphs of the same order are said to be equienergetic if their energies are equal. We point out the following two open problems for equienergetic graphs. (1) Although it is known that there are numerous pairs of equienergetic, non-cospectral trees, it is not known how to systematically construct any such pa...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید