نتایج جستجو برای: entity ranking
تعداد نتایج: 185805 فیلتر نتایج به سال:
Entity ranking is a recent paradigm that refers to retrieving and ranking related objects and entities from different structured sources in various scenarios. Entities typically have associated categories and relationships with other entities. In this work, we present an extensive analysis of Web-scale entity ranking, based on machine learned ranking models using an ensemble of pair-wise prefer...
Entity ranking has recently emerged as a research field that aims at retrieving entities as answers to a query. Unlike entity extraction where the goal is to tag the names of the entities in documents, entity ranking is primarily focused on returning a ranked list of relevant entity names for the query. Many approaches to entity ranking have been proposed, and most of them were evaluated on the...
In recent years, search engines have started presenting semantically relevant entity information together with document search results. Entity ranking systems are used to compute recommendations for related entities that a user might also be interested to explore. Typically, this is done by ranking relationships between entities in a semantic knowledge graph using signals found in a data source...
The Knowledge Media Institute of the Open University participated in the entity ranking and entity list completion tasks of the Entity Ranking Track in INEX 2007. In both the entity ranking and entity list completion tasks, we have considered document features in addition to a basic document content based relevance model. These document features include categorizations of documents, relevance o...
We address the problem of ranking relationships in an automatically constructed knowledge graph. We propose a probabilistic ranking mechanism that utilizes entity popularity, entity affinity, and support from text corpora for the relationships. Results obtained from preliminary experiments on a standard dataset are encouraging and show that our proposed ranking mechanism can find more informati...
We describe our participation in the INEX 2009 Entity Ranking track. We employ a probabilistic retrieval model for entity search in which term-based and category-based representations of queries and entities are effectively integrated. We demonstrate that our approach achieves state-of-the-art performance on both the entity ranking and list completion tasks.
There is a large amount of textual data on the Web and in Wikipedia, where mentions of entities (such as Gandhi) are annotated with a link to the disambiguated entity (such as M. K. Gandhi). Such annotation may have been done manually (as in Wikipedia) or can be done using named entity recognition/disambiguation techniques. Such an annotated corpus allows queries to return entities, instead of ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید