نتایج جستجو برای: ensemble kalman filter
تعداد نتایج: 166173 فیلتر نتایج به سال:
to perform any economic management of a petroleum reservoir in real time, a predictable and/or updateable model of reservoir along with uncertainty estimation ability is required. one relatively recent method is a sequential monte carlo implementation of the kalman filter: the ensemble kalman filter (enkf). the enkf not only estimate uncertain parameters but also provide a recursive estimate of...
As a result of the lack of the knowledge with regard to the statistical properties of the dynamic models and operational observations, as well as the computational burden related to the high dimensionality of the realistic data assimilation problems especially those complex nonlinear filtering problems, the ensemble Kalman filter scheme has been paid much more attention in recent years and has ...
A theory for estimating the probability distribution of the state of a model given a set of observations exists. This nonlinear filtering theory unifies the data assimilation and ensemble generation problem that have been key foci of prediction and predictability research for numerical weather and ocean prediction applications. A new algorithm, referred to as an ensemble adjustment Kalman filte...
Many methods using ensemble integrations of prediction models as integral parts of data assimilation have appeared in the atmospheric and oceanic literature. In general, these methods have been derived from the Kalman filter and have been known as ensemble Kalman filters. A more general class of methods including these ensemble Kalman filter methods is derived starting from the nonlinear filter...
To perform any economic management of a petroleum reservoir in real time, a predictable and/or updateable model of reservoir along with uncertainty estimation ability is required. One relatively recent method is a sequential Monte Carlo implementation of the Kalman filter: the Ensemble Kalman Filter (EnKF). The EnKF not only estimate uncertain parameters but also provide a recursive estimat...
The Kalman filter is used in this paper as a framework for space time data analysis. Using Kalman filtering it is possible to include physically based simulation models into the data analysis procedure. Attention is concentrated on the development of fast filter algorithms to make Kalman filtering feasible for high dimensional space time models. The ensemble Kalman filter and the reduced rank s...
Convergence of the ensemble Kalman filter in the limit for large ensembles to the Kalman filter is proved. In each step of the filter, convergence of the ensemble sample covariance follows from a weak law of large numbers for exchangeable random variables, the continuous mapping theorem gives convergence in probability of the ensemble members, and Lp bounds on the ensemble then give Lp converge...
The goal of this study is to compare the performances of the ensemble Kalman filter and a reduced-rank extended Kalman filter when applied to different dynamic regimes. Data assimilation experiments are performed using an eddy-resolving quasi-geostrophic model of the winddriven ocean circulation. By changing eddy viscosity, this model exhibits two qualitatively distinct behaviors: strongly chao...
Ensemble Kalman filter techniques are widely used to assimilate observations into dynamical models. The dimension of phase is typically much larger than the number of ensemble members which leads to inaccurate results in the computed covariance matrices. These inaccuracies lead, among others, to spurious long range correlations which can be eliminated by Schur-product-based localization techniq...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید