نتایج جستجو برای: embedded subgroups
تعداد نتایج: 151486 فیلتر نتایج به سال:
let h be a subgroup of a group g. h is said to be s-embedded in g if g has a normal t such that ht is an s-permutable subgroup of g and h ∩ t ≤ h sg, where h denotes the subgroup generated by all those subgroups of h which are s-permutable in g. in this paper, we investigate the influence of minimal s-embedded subgroups on the structure of finite groups. we determine the structure the finite grou...
we call $h$ an $ss$-embedded subgroup of $g$ if there exists a normal subgroup $t$ of $g$ such that $ht$ is subnormal in $g$ and $hcap tleq h_{sg}$, where $h_{sg}$ is the maximal $s$-permutable subgroup of $g$ contained in $h$. in this paper, we investigate the influence of some $ss$-embedded subgroups on the structure of a finite group $g$. some new results were obtained.
Let H be a subgroup of a group G. H is said to be S-embedded in G if G has a normal T such that HT is an S-permutable subgroup of G and H ∩ T ≤ H sG, where H denotes the subgroup generated by all those subgroups of H which are S-permutable in G. In this paper, we investigate the influence of minimal S-embedded subgroups on the structure of finite groups. We determine the structure the finite grou...
we call $h$ an $ss$-embedded subgroup of $g$ if there exists a normal subgroup $t$ of $g$ such that $ht$ is subnormal in $g$ and $hcap tleq h_{sg}$, where $h_{sg}$ is the maximal $s$-permutable subgroup of $g$ contained in $h$. in this paper, we investigate the influence of some $ss$-embedded subgroups on the structure of a finite group $g$. some new results were obtained.
In this paper we study finite groups which possess a strongly pembedded subgroup for some prime p. Suppose that p is a prime. A subgroup H of the finite group G is said to be strongly p-embedded in G if the following two conditions hold. (i) H < G and p divides |H|; and (ii) if g ∈ G \H , then p does not divide |H ∩H|. One of the most important properties of strongly p-embedded subgroups is tha...
suppose that $h$ is a subgroup of $g$, then $h$ is said to be $s$-permutable in $g$, if $h$ permutes with every sylow subgroup of $g$. if $hp=ph$ hold for every sylow subgroup $p$ of $g$ with $(|p|, |h|)=1$), then $h$ is called an $s$-semipermutable subgroup of $g$. in this paper, we say that $h$ is partially $s$-embedded in $g$ if $g$ has a normal subgroup $t$ such that $ht...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید