نتایج جستجو برای: edge coloring
تعداد نتایج: 121455 فیلتر نتایج به سال:
For a coloring $c$ of a graph $G$, the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively $sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$, where the summations are taken over all edges $abin E(G)$. The edge-difference chromatic sum, denoted by $sum D(G)$, and the edge-sum chromatic sum, denoted by $sum S(G)$, a...
Coloring graphs is one of important and frequently used topics in diverse sciences. In the majority of the articles, it is intended to find a proper bound for vertex coloring, edge coloring or total coloring in the graph. Although it is important to find a proper algorithm for graph coloring, it is hard and time-consuming too. In this paper, a new algorithm for vertex coloring, edge coloring an...
an acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. the acyclic chromatic index of a graph $g$ denoted by $chi_a '(g)$ is the minimum number $k$ such that there is an acyclic edge coloring using $k$ colors. the maximum degree in $g$ denoted by $delta(g)$, is the lower bound for $chi_a '(g)$. $p$-cuts introduced in this paper acts as a powerfu...
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph $G$ denoted by $chi_a '(G)$ is the minimum number $k$ such that there is an acyclic edge coloring using $k$ colors. The maximum degree in $G$ denoted by $Delta(G)$, is the lower bound for $chi_a '(G)$. $P$-cuts introduced in this paper acts as a powerfu...
let $g$ be a connected graph of order $3$ or more and $c:e(g)rightarrowmathbb{z}_k$ ($kge 2$) a $k$-edge coloring of $g$ where adjacent edges may be colored the same. the color sum $s(v)$ of a vertex $v$ of $g$ is the sum in $mathbb{z}_k$ of the colors of the edges incident with $v.$ the $k$-edge coloring $c$ is a modular $k$-edge coloring of $g$ if $s(u)ne s(v)$ in $mathbb{z}_k$ for all pa...
let f, g and h be non-empty graphs. the notation f → (g,h) means that if any edge of f is colored by red or blue, then either the red subgraph of f con- tains a graph g or the blue subgraph of f contains a graph h. a graph f (without isolated vertices) is called a ramsey (g,h)−minimal if f → (g,h) and for every e ∈ e(f), (f − e) 9 (g,h). the set of all ramsey (g,h)−minimal graphs is denoted by ...
An edge-coloring of a graph G with colors 1, . . . , t is an interval t-coloring if all colors are used, and the colors of edges incident to each vertex of G are distinct and form an interval of integers. A graph G is interval colorable if it has an interval t-coloring for some positive integer t. In this note we prove that K1,m,n is interval colorable if and only if gcd(m+ 1, n+ 1) = 1, where ...
We study the class of simple graphs G for which every pair of distinct odd cycles intersect in at most one edge. We give a structural characterization of the graphs in G and prove that every G ∈ G satisfies the list-edge-coloring conjecture. When ∆(G) ≥ 4, we in fact prove a stronger result about kernel-perfect orientations in L(G) which implies that G is (m∆(G) : m)edge-choosable and ∆(G)-edge...
An interval edge t-coloring of a graph G is a proper edge coloring of G with colors 1,2...,t such that at least one edge of G is colored by color i,i=1,2...,t, and the edges incident with each vertex x are colored by d_{G}(x) consecutive colors, where d_{G}(x) is the degree of the vertex x in G. For Mobius ladders the existence of this coloring is proved and all possible numbers of colors in su...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید