نتایج جستجو برای: dual g-frames

تعداد نتایج: 642740  

Journal: :international journal of industrial mathematics 2015
m. s. asgari g. kavian

‎in this paper‎, ‎first we develop the duality concept for $g$-bessel sequences‎ ‎and bessel fusion sequences in hilbert spaces‎. ‎we obtain some results about dual‎, ‎pseudo-dual ‎and approximate dual of frames and fusion frames‎. ‎we also expand every $g$-bessel ‎sequence to a frame by summing some elements‎. ‎we define the restricted isometry property for ‎$g$-frames and generalize some resu...

In this paper, we introduce the concept of $g$-dual frames for Hilbert $C^{*}$-modules, and then the properties and stability results of $g$-dual frames  are given.  A characterization of $g$-dual frames, approximately dual frames and dual frames of a given frame is established. We also give some examples to show that the characterization of $g$-dual frames for Riesz bases in Hilbert spaces is ...

G. Kavian, M. S. Asgari

In this paper we study the duality of Bessel and g-Bessel sequences in Hilbert spaces. We show that a Bessel sequence is an inner summand of a frame and the sum of any Bessel sequence with Bessel bound less than one with a Parseval frame is a frame. Next we develop this results to the g-frame situation.

Journal: :bulletin of the iranian mathematical society 2011
a. ahmadi a. askari hemmat

this paper is an investigation of $l$-dual frames with respect to a function-valued inner product, the so called $l$-bracket product on $l^{2}(g)$, where g is a locally compact abelian group with a uniform lattice $l$. we show that several well known theorems for dual frames and dual riesz bases in a hilbert space remain valid for $l$-dual frames and $l$-dual riesz bases in $l^{2}(g)$.

A. Ahmadi A. Askari Hemmat

This paper is an investigation of $L$-dual frames with respect to a function-valued inner product, the so called $L$-bracket product on $L^{2}(G)$, where G is a locally compact abelian group with a uniform lattice $L$. We show that several well known theorems for dual frames and dual Riesz bases in a Hilbert space remain valid for $L$-dual frames and $L$-dual Riesz bases in $L^{2}(G)$.

M. A. Dehghan M. A. Hasankhanifard

In this paper, g-dual function-valued frames in L2(0;1) are in- troduced. We can achieve more reconstruction formulas to ob- tain signals in L2(0;1) by applying g-dual function-valued frames in L2(0;1).

G. Kavian M. S. Asgari,

‎In this paper‎, ‎first we develop the duality concept for $g$-Bessel sequences‎ ‎and Bessel fusion sequences in Hilbert spaces‎. ‎We obtain some results about dual‎, ‎pseudo-dual ‎and approximate dual of frames and fusion frames‎. ‎We also expand every $g$-Bessel ‎sequence to a frame by summing some elements‎. ‎We define the restricted isometry property for ‎$g$-frames and generalize some resu...

Journal: :journal of linear and topological algebra (jlta) 2013
m. s asgari g kavian

in this paper we study the duality of bessel and g-bessel sequences in hilbertspaces. we show that a bessel sequence is an inner summand of a frame and the sum of anybessel sequence with bessel bound less than one with a parseval frame is a frame. next wedevelop this results to the g-frame situation.

Journal: :wavelet and linear algebra 2014
m. abdollahpour

in this paper, we first discuss about canonical dual of g-frameλp = {λip ∈ b(h, hi) : i ∈ i}, where λ = {λi ∈ b(h, hi) :i ∈ i} is a g-frame for a hilbert space h and p is the orthogonalprojection from h onto a closed subspace m. next, we provethat, if λ = {λi ∈ b(h, hi) : i ∈ i} and θ = {θi ∈ b(k, hi) :i ∈ i} be respective g-frames for non zero hilbert spaces hand k, and λ and θ are unitarily e...

Generalized frames are an extension of frames in Hilbert  spaces and  Hilbert $C^*$-modules. In this paper, the concept ''Similar" for modular $g$-frames is introduced and all of operator duals (ordinary duals) of similar $g$-frames with respect to each other are characterized. Also, an operator dual of a given $g$-frame is studied where $g$-frame is constructed by a primary $g$-frame and an or...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید