نتایج جستجو برای: dual g frames
تعداد نتایج: 642740 فیلتر نتایج به سال:
in this paper, first we develop the duality concept for $g$-bessel sequences and bessel fusion sequences in hilbert spaces. we obtain some results about dual, pseudo-dual and approximate dual of frames and fusion frames. we also expand every $g$-bessel sequence to a frame by summing some elements. we define the restricted isometry property for $g$-frames and generalize some resu...
In this paper, we introduce the concept of $g$-dual frames for Hilbert $C^{*}$-modules, and then the properties and stability results of $g$-dual frames are given. A characterization of $g$-dual frames, approximately dual frames and dual frames of a given frame is established. We also give some examples to show that the characterization of $g$-dual frames for Riesz bases in Hilbert spaces is ...
In this paper we study the duality of Bessel and g-Bessel sequences in Hilbert spaces. We show that a Bessel sequence is an inner summand of a frame and the sum of any Bessel sequence with Bessel bound less than one with a Parseval frame is a frame. Next we develop this results to the g-frame situation.
this paper is an investigation of $l$-dual frames with respect to a function-valued inner product, the so called $l$-bracket product on $l^{2}(g)$, where g is a locally compact abelian group with a uniform lattice $l$. we show that several well known theorems for dual frames and dual riesz bases in a hilbert space remain valid for $l$-dual frames and $l$-dual riesz bases in $l^{2}(g)$.
This paper is an investigation of $L$-dual frames with respect to a function-valued inner product, the so called $L$-bracket product on $L^{2}(G)$, where G is a locally compact abelian group with a uniform lattice $L$. We show that several well known theorems for dual frames and dual Riesz bases in a Hilbert space remain valid for $L$-dual frames and $L$-dual Riesz bases in $L^{2}(G)$.
In this paper, g-dual function-valued frames in L2(0;1) are in- troduced. We can achieve more reconstruction formulas to ob- tain signals in L2(0;1) by applying g-dual function-valued frames in L2(0;1).
In this paper, first we develop the duality concept for $g$-Bessel sequences and Bessel fusion sequences in Hilbert spaces. We obtain some results about dual, pseudo-dual and approximate dual of frames and fusion frames. We also expand every $g$-Bessel sequence to a frame by summing some elements. We define the restricted isometry property for $g$-frames and generalize some resu...
in this paper we study the duality of bessel and g-bessel sequences in hilbertspaces. we show that a bessel sequence is an inner summand of a frame and the sum of anybessel sequence with bessel bound less than one with a parseval frame is a frame. next wedevelop this results to the g-frame situation.
in this paper, we first discuss about canonical dual of g-frameλp = {λip ∈ b(h, hi) : i ∈ i}, where λ = {λi ∈ b(h, hi) :i ∈ i} is a g-frame for a hilbert space h and p is the orthogonalprojection from h onto a closed subspace m. next, we provethat, if λ = {λi ∈ b(h, hi) : i ∈ i} and θ = {θi ∈ b(k, hi) :i ∈ i} be respective g-frames for non zero hilbert spaces hand k, and λ and θ are unitarily e...
Generalized frames are an extension of frames in Hilbert spaces and Hilbert $C^*$-modules. In this paper, the concept ''Similar" for modular $g$-frames is introduced and all of operator duals (ordinary duals) of similar $g$-frames with respect to each other are characterized. Also, an operator dual of a given $g$-frame is studied where $g$-frame is constructed by a primary $g$-frame and an or...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید