Let Dn be the dihedral group of order 2n. For all integers r, s such that 1 ≤ r, s ≤ 2n, we give an explicit upper bound for the minimal size μDn (r, s) = min |A · B| of sumsets (product sets) A · B, where A and B range over all subsets of Dn of cardinality r and s respectively. It is shown by construction that μDn (r, s) is bounded above by the known value of μG (r, s), where G is any abelian ...