نتایج جستجو برای: differential polynomial ring
تعداد نتایج: 494276 فیلتر نتایج به سال:
in this note we introduce the notion of weak mccoy rings as a generalization of mccoy rings, and investigate their properties. also we show that, if is a semi-commutative ring, then is weak mccoy if and only if is weak mccoy.
It is shown that if the ring of constants of a restricted differential Lie algebra with a quasi-Frobenius inner part satisfies a polynomial identity (PI) then the original prime ring has a generalized polynomial identity (GPI). If additionally the ring of constants is semiprime then the original ring is PI. The case of a non-quasi-Frobenius inner part is also considered.
We construct a nil ring R which has bounded index of nilpotence 2, is Wedderburn radical, and is commutative, and which also has a derivation δ for which the differential polynomial ring R[x; δ] is not even prime radical. This example gives a strong barrier to lifting certain radical properties from rings to differential polynomial rings. It also demarcates the strength of recent results about ...
let $r=k[x_1,x_2,cdots, x_n]$ be a polynomial ring over a field $k$. we prove that for any positive integers $m, n$, $text{reg}(i^mj^nk)leq mtext{reg}(i)+ntext{reg}(j)+text{reg}(k)$ if $i, j, ksubseteq r$ are three monomial complete intersections ($i$, $j$, $k$ are not necessarily proper ideals of the polynomial ring $r$), and $i, j$ are of the form $(x_{i_1}^{a_1}, x_{i_2}^{a_2}, cdots, x_{i_l...
Let K be a field of characteristic p > 0. It is proved that each automorphism σ ∈ AutK(D(Pn)) of the ring D(Pn) of differential operators on a polynomial algebra Pn = K[x1, . . . , xn] is uniquely determined by the elements σ(x1), . . . , σ(xn), and the set Frob(D(Pn)) of all the extensions of the Frobenius from certain maximal commutative polynomial subalgebras of D(Pn), like Pn, is equal to A...
Let $R=k[x_1,x_2,cdots, x_N]$ be a polynomial ring over a field $k$. We prove that for any positive integers $m, n$, $text{reg}(I^mJ^nK)leq mtext{reg}(I)+ntext{reg}(J)+text{reg}(K)$ if $I, J, Ksubseteq R$ are three monomial complete intersections ($I$, $J$, $K$ are not necessarily proper ideals of the polynomial ring $R$), and $I, J$ are of the form $(x_{i_1}^{a_1}, x_{i_2}^{a_2}, cdots, x_{i_l...
we consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmpxypxypxy++++2(,)(,)(,)nnmnmyqxyqxyqxy++&=++. for where and are homogeneous polynomials of degree i. inside this class of polynomial differential equation we consider a subclass of darboux integrable systems. moreover, under additional conditions we proved such darboux integrable systems can have at most 1 limit cycle.
LetR = k[x1, . . . , xd] be the polynomial ring in d independent variables, where k is a field of characteristic p > 0. Let DR be the ring of k-linear differential operators of R and let f be a polynomial in R. In this work we prove that the localization R[ 1 f ] obtained from R by inverting f is generated as a DR-module by 1 f . This is an amazing fact considering that the corresponding charac...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید