نتایج جستجو برای: degree resistance distance

تعداد نتایج: 889388  

Journal: :transactions on combinatorics 2012
ivan gutman linhua feng guihai yu

let $g$ be a connected graph with vertex set $v(g)$‎. ‎the‎ ‎degree resistance distance of $g$ is defined as $d_r(g) = sum_{{u‎,‎v} subseteq v(g)} [d(u)+d(v)] r(u,v)$‎, ‎where $d(u)$ is the degree‎ ‎of vertex $u$‎, ‎and $r(u,v)$ denotes the resistance distance between‎ ‎$u$ and $v$‎. ‎in this paper‎, ‎we characterize $n$-vertex unicyclic‎ ‎graphs having minimum and second minimum degree resista...

Journal: :Discrete Applied Mathematics 2015

Journal: :transactions on combinatorics 2013
mardjan hakimi-nezhaad ali reza ashrafi ivan gutman

the degree kirchhoff index of a connected graph $g$ is defined as‎ ‎the sum of the terms $d_i,d_j,r_{ij}$ over all pairs of vertices‎, ‎where $d_i$ is the‎ ‎degree of the $i$-th vertex‎, ‎and $r_{ij}$ the resistance distance between the $i$-th and‎ ‎$j$-th vertex of $g$‎. ‎bounds for the degree kirchhoff index of the line and para-line‎ ‎graphs are determined‎. ‎the special case of regular grap...

2012
Alireza Abdollahi G. Yu

Let G be a connected graph with vertex set V (G). The degree resistance distance of G is defined as DR(G) = ∑ fu,vg V (G)[d(u) +d(v)]R(u, v), where d(u) is the degree of vertex u, and R(u, v) denotes the resistance distance between u and v. In this paper, we characterize n-vertex unicyclic graphs having minimum and second minimum degree resistance distance.

Journal: :Discrete Applied Mathematics 2015
Junfeng Du Guifu Su Jianhua Tu Ivan Gutman

Graph invariants, based on the distances between the vertices of a graph, are widely used in theoretical chemistry. The degree resistance distance of a graph G is defined as D R (G) =  {u,v}⊆V (G) [d(u) + d(v)]R(u, v), where d(u) is the degree of the vertex u, and R(u, v) the resistance distance between the vertices u and v. Let Cact(n; t) be the set of all cacti possessing n vertices and t cy...

A {it topological index} of a graph is a real number related to the graph; it does not depend on labeling or pictorial representation of a graph. In this paper, we present the upper bounds for the product version of reciprocal degree distance of the tensor product, join and strong product of two graphs in terms of other graph invariants including the Harary index and Zagreb indices.

Journal: :Bulletin of the Australian Mathematical Society 2012

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید