نتایج جستجو برای: dcc of engle
تعداد نتایج: 21164373 فیلتر نتایج به سال:
in this paper we compared multivariate garch models toestimate value-at-risk. we used a portfolio of weekly indexesincluding tedpix, klse, xu100 during ten years. to estimatevalue-at-risk, first we estimated ccc, dcc of engle, dcc of tseand tsui, dynamic equi correlation models by oxmetrics. then,optimum lags were estimated by minimizing the information criteria.to estimate var, the models accu...
The purpose of the paper is to discuss ten things potential users should know about the limits of the Dynamic Conditional Correlation (DCC) representation for estimating and forecasting time-varying conditional correlations. The reasons given for caution about the use of DCC include the following: DCC represents the dynamic conditional covariances of the standardized residuals, and hence does n...
This paper considers a multivariate t version of the Gaussian dynamic conditional correlation (DCC) model proposed by Engle (2002), and suggests the use of devolatized returns computed as returns standardized by realized volatilities rather than by GARCH type volatility estimates. The t-DCC estimation procedure is applied to a portfolio of daily returns on currency futures, government bonds and...
This paper provides an extension of the Dynamic Conditional Correlation model of Engle (2002) by allowing both the unconditional correlation and the parameters to be driven by an unobservable Markov chain. We provide the estimation algorithm and perform an empirical analysis of the contagion phenomenon in which our model is compared to the traditional CCC and DCC representations.
In this paper we put forward a generalization of the Dynamic Conditional Correlation (DCC) Model of Engle (2002). Our model allows for asset-specific correlation sensitivities, which is useful in particular if one aims to summarize a large number of asset returns. The resultant GDCC model is considered for daily data on 18 German stock returns, which are all included in the DAX, and for 25 UK s...
The extraordinary conditions in the financial world of late 2008 caused severe market dislocations and consequently many asset managers experienced significant portfolio losses, partly due to ineffective hedging techniques. In order to examine the effect of the credit crisis on investment strategies, we create a diverse set of long-short equity portfolios with domestic equity sectors and an arr...
Multivariate GARCH (MGARCH) models are usually estimated under multivariate normality. In this paper, for non-elliptically distributed financial returns, we propose copula-based multivariate GARCH (C-MGARCH) model with uncorrelated dependent errors, which are generated through a linear combination of dependent random variables. The dependence structure is controlled by a copula function. Our ne...
The intertemporal capital asset pricing model of Merton (1973) is examined using the dynamic conditional correlation (DCC) model of Engle (2002). The mean-reverting DCC model is used to estimate a stock’s (portfolio’s) conditional covariance with the market and test whether the conditional covariance predicts time-variation in the stock’s (portfolio’s) expected return. The risk-aversion coeffic...
Riassunto. A partire dal contributo di Engle (2002), il lavoro introduce ed analizza diverse parametrizzazioni a correlazioni dinamiche (DCC). Dopo un’introduzione generale, che riorganizza gli attuali contributi, sono presentate due possibili estensioni: l’introduzione di una struttura a blocchi nei parametri del modello e l’inclusione di cambi di regime nella correlazione non condizionale del...
Many researchers seek factors that predict the cross-section of stock returns. The standard methodology sorts stocks according to their factor scores into quantiles and forms a corresponding long-short portfolio. Such a course of action ignores any information on the covariance matrix of stock returns. Historically, it has been difficult to estimate the covariance matrix for a large universe of...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید