نتایج جستجو برای: cyclicizers

تعداد نتایج: 2  

Journal: :international journal of group theory 2013
sekhar jyoti baishya

a group $g$ is said to be a c-tidy group if for every element $x in g setminus k(g)$‎, ‎the set $cyc(x)=lbrace y in g mid langle x‎, ‎y rangle ; {rm is ; cyclic} rbrace$ is a cyclic subgroup of $g$‎, ‎where $k(g)=underset{x in g}bigcap cyc(x)$‎. ‎in this short note we determine the structure of finite c-tidy groups‎.

Journal: :international journal of group theory 2012
sekhar jyoti baishya

let $g$ be a group and $x in g$‎. ‎the cyclicizer of $x$ is defined to be the subset $cyc(x)=lbrace y in g mid langle x‎, ‎yrangle ; {rm is ; cyclic} rbrace$‎. ‎$g$ is said to be a tidy group if $cyc(x)$ is a subgroup for all $x in g$‎. ‎we call $g$ to be a c-tidy group if $cyc(x)$ is a cyclic subgroup for all $x in g setminus k(g)$‎, ‎where $k(g)$ is the intersection of all the cyclicizers in ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید