نتایج جستجو برای: cu2o
تعداد نتایج: 1199 فیلتر نتایج به سال:
Highly aligned Cu2O, Cu2O/CuO, Cu2O/CuO/TiO2 and Cu2O/TiO2 nanowires arrays on Au substrates were prepared by controlled air annealing of the electrodeposited Cu nanowires and furthered with dip coating. Photoelectrochemical investigations were carried out to determine their potential as photocathodes for water photo-reduction. The photocurrent of the Cu2O nanowires photocathode was found to be...
Cuprous oxide (Cu2O) films were grown by electrodeposition in aqueous solutions of varying pH. The effect of bath pH on morphology, structural, and photoelectrochemical (PEC) properties of Cu2O films was investigated. XRD showed that all prepared films were polycrystalline Cu2O, without formation of competing phases such as CuO and Cu. The film grown in the solution with a pH of 8 is made up of...
Cu2O nanocrystals with different morphologies are synthesized via a reductive solution route by controlling the reaction time and using different capping agents. Introducing poly(ethylene glycol) (PEG) leads to nearly monodispersed Cu2O nanocubes with 40 nm size and dominant {100} crystal planes. With prolonged reaction time, the nanocubes are truncated and transformed into sphere-like nanocrys...
Broader context Cuprous oxide (Cu2O) is a candidate material for photovoltaic and photoelectrochemical device applications due to its suitable band gap and low processing cost. Furthermore, due to the natural abundance of its component elements in the atmosphere and crust, it is a candidate for terawatt scale solar energy production. Given the electronic band gap of Cu2O is 2.1 eV, the detailed...
We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes ...
Controllable integration of metal nanoparticles (MNPs) and metal-organic frameworks (MOFs) is attracting considerable attention as the obtained composite materials always show synergistic effects in applications of catalysis, delivery, as well as sensing. Herein, a Cu2O-directed in situ growth strategy was developed to integrate Au nanoparticles and HKUST-1. In this strategy, Cu2O@HKUST-1 core-...
Herein, we report that octahedral and spherical Cu2O samples with hollow structures are synthesized in high yield by reducing Cu(EDA)22+ complex with hydrazine. A series of experiments are carried out to investigate the factors which impact on the morphology of the Cu2O samples. It is observed that ethylenediamine (EDA) serves as a molecular template in the formation of hollow structure. Octahe...
Cuprous oxide agglomerates composed of 4-10 nm Cu2O nanoparticles were deposited on multiwalled carbon nanotubes (MWCNTs) and on ZnO/MWCNTs to give binary [Cu2O/MWCNT] and ternary [Cu2O/ZnO/MWCNT] composites. Di-aqua-bis[2-(methoxyimino)propanoato]copper Cu[O2CCCH3NOMe](2)·2H2O 1 in DMF was used as single source precursor for the deposition of nanoscaled Cu2O. The precursor decomposes either in...
New Cu2O-on-Cu nanowires (NWs) are constructed to develop the visible-light-driven activity of photocatalysts via the facile self-assembly of Cu2O nanoparticles (NPs) on a Cu NW surface assisted by a structure director, followed in situ reduction. In the resultant Cu2O-on-Cu NWs, the Cu2O NPs, with a diameter of 10 nm, show good distribution on the 50 nm-sized Cu single-crystal NWs. Owing to th...
Atmospheric pressure spatial atomic layer deposition (AP-SALD) was used to deposit n-type ZnO and Zn1-xMgxO thin films onto p-type thermally oxidized Cu2O substrates outside vacuum at low temperature. The performance of photovoltaic devices featuring atmospherically fabricated ZnO/Cu2O heterojunction was dependent on the conditions of AP-SALD film deposition, namely, the substrate temperature a...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید