In this paper, we show that if $M$ is a non-zero Artinian $R$-module and $\underline{x}:=x_1,\ldots,x_n$ an $M$-coregular sequence, then $x_1,\ldots,x_n$ $D(H_n^{\underline{x}}(M))$-coregular sequence. Moreover, $R$ complete with respect to $I$-adic topology $d=\mathrm{Ndim} M$, $\dim H^I_d(M) \le d$ $\mathrm{depth} H_I^d(M)\ge \min\{{2, d}\}$ whenever $H^I_d(M) \ne 0.$