نتایج جستجو برای: complement of the annihilating-ideal graph of a commutative ring

تعداد نتایج: 24602922  

The rings considered in this article are commutative rings with identity $1neq 0$. The aim of this article is to define and study the exact annihilating-ideal graph of commutative rings. We discuss the interplay between the ring-theoretic properties of a ring and graph-theoretic properties of exact annihilating-ideal graph of the ring.

Journal: :communication in combinatorics and optimization 0
abbas alilou azarbaijan shahid madani university jafar amjadi azarbaijan shahid madani university

let $r$ be a commutative ring with identity. an ideal $i$ of a ring $r$is called an annihilating ideal if there exists $rin rsetminus {0}$ such that $ir=(0)$ and an ideal $i$ of$r$ is called an essential ideal if $i$ has non-zero intersectionwith every other non-zero ideal of $r$. thesum-annihilating essential ideal graph of $r$, denoted by $mathcal{ae}_r$, isa graph whose vertex set is the set...

Journal: :algebraic structures and their applications 0
s. visweswaran saurashtra university, rajkot a. parmar saurashtra university, rajkot

the rings considered in this article are  commutative  with identity which admit at least two  nonzero annihilating ideals. let $r$ be a ring. let $mathbb{a}(r)$ denote the set of all annihilating ideals of $r$ and let $mathbb{a}(r)^{*} = mathbb{a}(r)backslash {(0)}$. the annihilating-ideal graph of $r$, denoted by $mathbb{ag}(r)$  is an undirected simple graph whose vertex set is $mathbb{a}(r)...

Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...

A. PARMAR S. VISWESWARAN

 The rings considered in this article are  commutative  with identity which admit at least two  nonzero annihilating ideals. Let $R$ be a ring. Let $mathbb{A}(R)$ denote the set of all annihilating ideals of $R$ and let $mathbb{A}(R)^{*} = mathbb{A}(R)backslash {(0)}$. The annihilating-ideal graph of $R$, denoted by $mathbb{AG}(R)$  is an undirected simple graph whose vertex set is $mathbb{A}(R...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شیراز - دانشکده علوم 1390

throughout this dissertation r is a commutative ring with identity and m is a unitary r-module. in this dissertation we investigate submodules of multiplication , prufer and dedekind modules. we also stat the equivalent conditions for which is ring , wher l is a submodule of afaithful multiplication prufer module. we introduce the concept of integrally closed modules and show that faithful mu...

Let R be a non-domain commutative ring with identity and A(R) be theset of non-zero ideals with non-zero annihilators. We call an ideal I of R, anannihilating-ideal if there exists a non-zero ideal J of R such that IJ = (0).The annihilating-ideal graph of R is defined as the graph AG(R) with the vertexset A(R) and two distinct vertices I and J are adjacent if and only if IJ =(0). In this paper,...

Let $R$ be a commutative ring with identity, and $ mathrm{A}(R) $ be the set of ideals with non-zero annihilator. The annihilating-ideal graph of $ R $ is defined as the graph $AG(R)$ with the vertex set $ mathrm{A}(R)^{*}=mathrm{A}(R)setminuslbrace 0rbrace $ and two distinct vertices $ I $ and $ J $ are adjacent if and only if $ IJ=0 $. In this paper, conditions under which $AG(R)$ is either E...

The annihilating-ideal graph of a commutative ring $R$ is denoted by $AG(R)$, whose vertices are all nonzero ideals of $R$ with nonzero annihilators and two distinct vertices $I$ and $J$ are adjacent if and only if $IJ=0$. In this article, we completely characterize rings $R$ when $gr(AG(R))neq 3$.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه ملایر - دانشکده علوم پایه 1391

فرض کنیمrحلقه ای جابجایی باشد. گراف ایدآل های پوچ کننده ی یکدیگر برای حلق? rرا با نماد(ag(rنمایش داده و بصورت گرافی با مجموعه رئوس*(a(r تعریف میکنیم.دو رأس متمایز در این گراف مجاورند اگر و تنها اگر حاصلضربشان برابر با صفر باشد.بهبودی و راکعی در [ m.behboodi and z.rakeei, the annihilating-ideal graph of commutative ringii, j. algebra apple. 10(4]در مورد گراف ایدآل های پوچ کنند? یکدیگر حدس زدند د...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید