نتایج جستجو برای: complement of the annihilating ideal graph of a commutative ring
تعداد نتایج: 24602922 فیلتر نتایج به سال:
The rings considered in this article are commutative rings with identity $1neq 0$. The aim of this article is to define and study the exact annihilating-ideal graph of commutative rings. We discuss the interplay between the ring-theoretic properties of a ring and graph-theoretic properties of exact annihilating-ideal graph of the ring.
let $r$ be a commutative ring with identity. an ideal $i$ of a ring $r$is called an annihilating ideal if there exists $rin rsetminus {0}$ such that $ir=(0)$ and an ideal $i$ of$r$ is called an essential ideal if $i$ has non-zero intersectionwith every other non-zero ideal of $r$. thesum-annihilating essential ideal graph of $r$, denoted by $mathcal{ae}_r$, isa graph whose vertex set is the set...
the rings considered in this article are commutative with identity which admit at least two nonzero annihilating ideals. let $r$ be a ring. let $mathbb{a}(r)$ denote the set of all annihilating ideals of $r$ and let $mathbb{a}(r)^{*} = mathbb{a}(r)backslash {(0)}$. the annihilating-ideal graph of $r$, denoted by $mathbb{ag}(r)$ is an undirected simple graph whose vertex set is $mathbb{a}(r)...
Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...
The rings considered in this article are commutative with identity which admit at least two nonzero annihilating ideals. Let $R$ be a ring. Let $mathbb{A}(R)$ denote the set of all annihilating ideals of $R$ and let $mathbb{A}(R)^{*} = mathbb{A}(R)backslash {(0)}$. The annihilating-ideal graph of $R$, denoted by $mathbb{AG}(R)$ is an undirected simple graph whose vertex set is $mathbb{A}(R...
throughout this dissertation r is a commutative ring with identity and m is a unitary r-module. in this dissertation we investigate submodules of multiplication , prufer and dedekind modules. we also stat the equivalent conditions for which is ring , wher l is a submodule of afaithful multiplication prufer module. we introduce the concept of integrally closed modules and show that faithful mu...
Let R be a non-domain commutative ring with identity and A(R) be theset of non-zero ideals with non-zero annihilators. We call an ideal I of R, anannihilating-ideal if there exists a non-zero ideal J of R such that IJ = (0).The annihilating-ideal graph of R is defined as the graph AG(R) with the vertexset A(R) and two distinct vertices I and J are adjacent if and only if IJ =(0). In this paper,...
Let $R$ be a commutative ring with identity, and $ mathrm{A}(R) $ be the set of ideals with non-zero annihilator. The annihilating-ideal graph of $ R $ is defined as the graph $AG(R)$ with the vertex set $ mathrm{A}(R)^{*}=mathrm{A}(R)setminuslbrace 0rbrace $ and two distinct vertices $ I $ and $ J $ are adjacent if and only if $ IJ=0 $. In this paper, conditions under which $AG(R)$ is either E...
The annihilating-ideal graph of a commutative ring $R$ is denoted by $AG(R)$, whose vertices are all nonzero ideals of $R$ with nonzero annihilators and two distinct vertices $I$ and $J$ are adjacent if and only if $IJ=0$. In this article, we completely characterize rings $R$ when $gr(AG(R))neq 3$.
فرض کنیمrحلقه ای جابجایی باشد. گراف ایدآل های پوچ کننده ی یکدیگر برای حلق? rرا با نماد(ag(rنمایش داده و بصورت گرافی با مجموعه رئوس*(a(r تعریف میکنیم.دو رأس متمایز در این گراف مجاورند اگر و تنها اگر حاصلضربشان برابر با صفر باشد.بهبودی و راکعی در [ m.behboodi and z.rakeei, the annihilating-ideal graph of commutative ringii, j. algebra apple. 10(4]در مورد گراف ایدآل های پوچ کنند? یکدیگر حدس زدند د...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید