نتایج جستجو برای: cohen macaulay type
تعداد نتایج: 1351039 فیلتر نتایج به سال:
Let (R,m) be a local Cohen-Macaulay ring whose m-adic completion R̂ has an isolated singularity. We verify the following conjecture of F.-O. Schreyer: R has finite Cohen-Macaulay type if and only if R̂ has finite Cohen-Macaulay type. We show also that the hypersurface k[[x0, . . . , xd]]/(f) has finite Cohen-Macaulay type if and only if k [[x0, . . . , xd]]/(f) has finite Cohen-Macaulay type, whe...
let $i$ be an ideal in a regular local ring $(r,n)$, we will find bounds on the first and the last betti numbers of $(a,m)=(r/i,n/i)$. if $a$ is an artinian ring of the embedding codimension $h$, $i$ has the initial degree $t$ and $mu(m^t)=1$, we call $a$ a {it $t-$extended stretched local ring}. this class of local rings is a natural generalization of the class of stretched ...
A commutative local Cohen-Macaulay ring R of finite Cohen-Macaulay type is known to be an isolated singularity; that is, Spec(R) \ {m} is smooth. This paper proves a non-commutative analogue. Namely, if A is a (non-commutative) graded Artin-Schelter Cohen-Macaulay algebra which is FBN and has finite Cohen-Macaulay type, then the non-commutative projective scheme determined by A is smooth.
Let be a local Cohen-Macaulay ring with infinite residue field, an Cohen - Macaulay module and an ideal of Consider and , respectively, the Rees Algebra and associated graded ring of , and denote by the analytic spread of Burch’s inequality says that and equality holds if is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of as In this paper we ...
Let be a commutative Noetherian ring and let I be a proper ideal of . D’Anna and Fontana in [6] introduced a new construction of ring, named amalgamated duplication of along I. In this paper by considering the ring homomorphism , it is shown that if , then , also it is proved that if , then there exists such that . Using this result it is shown that if is generically Cohen-Macaulay (resp. gen...
It is a well known fact that a supersolvable lattice is ELoshellable. Hence a supersolvable lattice (resp., its Stanley-Reisner ring) is Cohen-Macaulay. We prove that if L is a supersolvable lattice such that all intervals have non-vanishing Mt~bius number, then for an arbitrary element x e L the poser L {x} is also Cohen-Macaulay. Posets with this property are called 2-Cohen-Macaulay posets. I...
For a skew version of graded (A ∞ ) hypersurface singularity A, we study the stable category maximal Cohen-Macaulay modules over A. As consequence, see that A has countably infinite Cohen–Macaulay representation type and is not noncommutative isolated singularity.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید