نتایج جستجو برای: cmorph
تعداد نتایج: 135 فیلتر نتایج به سال:
With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration's (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORP...
Satellite-based precipitation estimates products, CMORPH and PERSIANN-CCS, were evaluated with a dense rain gauge network over Beijing and adjacent regions for an extremely heavy precipitation event on July 21 2012. CMORPH and PEERSIANN-CSS misplaced the region of greatest rainfall accumulation, and failed to capture the spatial pattern of precipitation, evidenced by a low spatial correlation c...
In the present study, four high-resolution multi-sensor blended precipitation products, TRMM Multisatellite Precipitation Analysis (TMPA) research product (3B42 V7) and near real-time product (3B42 RT), Climate Prediction Center MORPHing technique (CMORPH) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), are evaluated over the Yangtze Ri...
Results of numerous evaluation studies indicated that satellite-rainfall products are contaminated with significant systematic and random errors. Therefore, such products may require refinement and correction before being used for hydrologic applications. In the present study, we explore a rainfall-runoff modeling application using the Climate Prediction Center-MORPHing (CMORPH) satellite rainf...
Satellite precipitation products (SPPs) are critical data sources for hydrological prediction and extreme event monitoring, especially for ungauged basins. This study conducted a comprehensive hydrological evaluation of six mainstream SPPs (i.e., TMPA 3B42RT, CMORPH-RT, PERSIANN-RT, TMPA 3B42V7, CMORPH-CRT, and PERSIANN-CDR) over humid Xixian basin in central eastern China for a period of 14 ye...
Satellite-based rainfall products have extensive applications in global change studies, but they are known to contain deviations that require comprehensive verification at different scales. In this paper, we evaluated the accuracies of two high-resolution satellite-based rainfall products: the Tropical Rainfall Measurement Mission (TRMM) rainfall product 3B42V7 and the Climate Prediction Center...
The correspondence between five precipitation products, including CMORPH, GPCP-2, TRMM 3B43, GPCC, and ITPCAS, and ground-based measurements of precipitation were evaluated on annual, seasonal, and monthly scales during 2000-2014 in the Qinling-Daba Mountains over China, which is a significant area with vital value of climate and hydrology. Performances of the precipitation products in the rela...
Benefiting from the high spatiotemporal resolution and near-global coverage, satellite-based precipitation products are applied in many research fields. However, the applications of these products may be limited due to lack of information on the uncertainties. To facilitate applications of these products, it is crucial to quantify and document their error characteristics. In this study, four sa...
In the framework of the African DAms ProjecT (ADAPT), an integrated water resource management study in the Zambezi Basin is currently under development. In view of the sparse gauging network for rainfall monitoring, the observations from spaceborne instrumentation currently produce the only available rainfall data for a large part of the basin. Three operational and acknowledged high resolution...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید